

 [image: _images/SimpleInjector.png]

Welcome to Simple Injector’s documentation!

Simple Injector is an easy-to-use Dependency Injection (DI) library for .NET that supports .NET Core, Xamarin, Mono and Universal apps. Simple Injector is easily integrated with frameworks such as Web API, MVC, WCF, ASP.NET Core and many others. It’s easy to implement the dependency injection pattern with loosely coupled components using Simple Injector.

Use:

	Get official builds from NuGet#1 or run the following command in the Package Manager Console: PM> Install-Package SimpleInjector

	Download the binaries#2.

	Browse the source code#3.

	Browse questions on Stackoverflow#4 and Github#5.

Engage:

	Discuss#6

	Contribute#7

	Twitter#8

Contents:

	Quick Start
	Overview

	Getting started

	A Quick Example
	Dependency Injection

	Introducing Simple Injector

	More information

	Using Simple Injector
	Resolving instances

	Configuring Simple Injector
	Auto-Registration/Batch-registration

	Collections
	Collection types

	Auto-registering collections

	Adding registrations to an existing collection

	Verifying the container’s configuration

	Automatic constructor injection / auto-wiring

	More information

	Object Lifetime Management
	Transient Lifestyle

	Singleton Lifestyle

	Scoped Lifestyle
	Order of disposal

	Retrieving list of container-created disposables

	Thread Scoped Lifestyle

	Async Scoped Lifestyle (async/await)

	Web Request Lifestyle

	Async Scoped lifestyle vs. Web Request lifestyle

	WCF Operation Lifestyle

	Per Graph Lifestyle

	Instance Per Dependency Lifestyle

	Per Thread Lifestyle

	Per HTTP Session Lifestyle

	Hybrid Lifestyle

	Developing a Custom Lifestyle

	Integration Guide
	Console Applications

	ASP.NET Core MVC
	Available integration packages

	Wiring custom middleware

	Cross wiring ASP.NET and third-party services

	Working with IOptions<T>

	Using Hosted Services

	Using [FromServices] in ASP.NET Core MVC Controllers

	Resolving services from MVC’s ValidationContext

	Using Razor Pages

	Working with ASP.NET Core Identity

	 .NET Generic Host
	Using Hosted Services

	 ServiceCollection Console Applications
	Cross wiring framework and third-party services

	Disposing the Container

	Integrating with Microsoft Logging

	Integrating with Microsoft Localization

	Working with IOptions<T>

	ASP.NET MVC

	ASP.NET Web API
	Basic setup

	Extra features

	ASP.NET Web Forms

	OWIN
	Basic setup

	Extra features

	Windows Forms

	WCF
	WAS Hosting and Non-HTTP Activation

	WPF
	Step 1:

	Step 2:

	Step 3:

	Usage

	Other Technologies

	Patterns

	Diagnostic Services
	Supported Diagnostic Warnings
	Lifestyle Mismatches

	Short Circuited Dependencies

	Torn Lifestyle

	Ambiguous Lifestyles

	Disposable Transient Components

	Supported Information Messages
	Potential Single Responsibility Violations

	Container-Registered Types

	How to view diagnostic results

	Suppressing warnings

	Limitations

	How To
	Register factory delegates
	Lazy

	Resolve instances by key

	Register multiple interfaces with the same implementation

	Override existing registrations

	Verify the container’s configuration

	Work with dependency injection in multi-threaded applications

	Package registrations

	Advanced Scenarios
	Generics

	Batch-Registration / Auto-Registration

	Registration of open-generic types

	Mixing collections of open-generic and non-generic components

	Unregistered type resolution

	Context-based injection
	Making contextual registrations based on the parent’s metadata

	Making contextual registrations based on the parent’s parent

	Property injection
	Implicit property injection

	Explicit property injection

	Enabling property injection

	IPropertySelectionBehavior

	Covariance and Contravariance

	Registering plugins dynamically

	Aspect-Oriented Programming
	Decoration
	Applying Decorators conditionally

	Applying Decorators conditionally using type constraints

	Decorators with Func<T> decoratee factories

	Decorated collections

	Using contextual information inside decorators

	Applying decorators conditionally based on consumer

	Decorator registration factories

	Interception using Dynamic Proxies

	Extensibility Points
	Overriding Constructor Resolution Behavior

	Overriding Property Injection Behavior

	Overriding Parameter Injection Behavior

	Resolving Unregistered Types

	Overriding Lifestyle Selection Behavior

	Intercepting the Creation of Types

	Building up External Instances

	Interception of Resolved Object Graphs

	Container-locking

	Simple Injector Pipeline
	Registration Pipeline

	Resolve Pipeline

	Design Principles
	Make simple use cases easy, make complex use cases possible

	Push developers into best practices

	Fast by default

	Don’t force vendor lock-in

	Never fail silently

	Features should be intuitive

	Communicate errors clearly and describe how to solve them

	Design Decisions
	The container is locked after the first call to resolve

	The API clearly differentiates the registration of collections

	No support for XML based configuration

	Never force users to release what they resolve

	Don’t allow resolving scoped instances outside an active scope

	No out-of-the-box support for property injection

	No out-of-the-box support for dynamic interception

	Limited Auto-Registration API

	No per-thread lifestyle

	Allow only a single constructor

	No support for optional constructor arguments

	Legal stuff
	Simple Injector License

	Contributions

	Simple Injector Trademark Policy

	How to Contribute

	Appendix
	Interception Extensions

	Variance Extensions

	Resolution conflicts caused by dynamic assembly loading
	What’s the problem?

	So what do you need to do?

	InjectionConsumerInfo.ServiceType is deprecated
	What’s the problem?

	So what should I do instead?

	API Documentation#9

Indices and tables

	Index

	Module Index

	Search Page

Footnotes

	#1

	https://simpleinjector.org/nuget

	#2

	https://simpleinjector.org/download

	#3

	https://simpleinjector.org/source

	#4

	https://simpleinjector.org/stackoverflow

	#5

	https://simpleinjector.org/issues

	#6

	https://simpleinjector.org/forum

	#7

	https://simpleinjector.org/contribute

	#8

	https://simpleinjector.org/twitter

	#9

	https://simpleinjector.org/ReferenceLibrary/

Quick Start

Overview

The goal of Simple Injector is to provide .NET application developers with an easy, flexible, and fast Inversion of Control library#1 that promotes best practice to steer developers towards the pit of success.

Many of the existing DI libraries have a big complicated legacy API or are new, immature, and lack features often required by large scale development projects. Simple Injector fills this gap by supplying a simple implementation with a carefully selected and complete set of features. File and attribute based configuration methods have been abandoned (they invariably result in brittle and maintenance heavy applications), favoring simple code-based configuration instead. This is enough for most applications, requiring only that the configuration be performed at the start of the program. The core library contains many features and allows almost any advanced scenario.

The following platforms are supported:

	.NET 4.0 and up.

	.NET Standard including:
* Universal Windows Programs.
* Mono.
* .NET Core.
* Xamarin.

Simple Injector is carefully designed to run in partial / medium trust, and it is fast; blazingly fast.

Getting started

The easiest way to get started is by installing the available NuGet packages#2.

A Quick Example

Dependency Injection

The general idea behind Simple Injector (or any DI library for that matter) is that you design your application around loosely coupled components using the Dependency Injection pattern#3 while adhering to the Dependency Inversion Principle#4. Take for instance the following CancelOrderHandler class:

public class CancelOrderHandler
{
 private readonly IOrderRepository repository;
 private readonly ILogger logger;
 private readonly IEventPublisher publisher;

 // Use constructor injection for the dependencies
 public CancelOrderHandler(
 IOrderRepository repository, ILogger logger, IEventPublisher publisher)
 {
 this.repository = repository;
 this.logger = logger;
 this.publisher = publisher;
 }

 public void Handle(CancelOrder command)
 {
 this.logger.Log("Cancelling order " + command.OrderId);
 var order = this.repository.GetById(command.OrderId);
 order.Status = OrderStatus.Cancelled;
 this.repository.Save(order);
 this.publisher.Publish(new OrderCancelled(command.OrderId));
 }
}

public class SqlOrderRepository : IOrderRepository
{
 private readonly ILogger logger;

 // Use constructor injection for the dependencies
 public SqlOrderRepository(ILogger logger)
 {
 this.logger = logger;
 }

 public Order GetById(Guid id)
 {
 this.logger.Log("Getting Order " + order.Id);
 // Retrieve from db.
 }

 public void Save(Order order)
 {
 this.logger.Log("Saving order " + order.Id);
 // Save to db.
 }
}

The CancelOrderHandler class depends on the IOrderRepository, ILogger and IEventPublisher interfaces. By not depending on concrete implementations, you can test CancelOrderHandler in isolation. But ease of testing is only one of a number of things that Dependency Injection gives us. It also enables you, for example, to design highly flexible systems that can be completely composed in one specific location (often the startup path) of the application.

Introducing Simple Injector

Using Simple Injector in a simple Console application, the configuration of the application using the CancelOrderHandler and SqlOrderRepository classes shown above, might look something like this:

using SimpleInjector;

static class Program
{
 static readonly Container container;

 static Program()
 {
 // 1. Create a new Simple Injector container
 container = new Container();

 // 2. Configure the container (register)
 container.Register<IOrderRepository, SqlOrderRepository>();
 container.Register<ILogger, FileLogger>(Lifestyle.Singleton);
 container.Register<CancelOrderHandler>();

 // 3. Verify your configuration
 container.Verify();
 }

 static void Main(string[] args)
 {
 // 4. Use the container
 var handler = container.GetInstance<CancelOrderHandler>();

 var orderId = Guid.Parse(args[0]);
 var command = new CancelOrder { OrderId = orderId };

 handler.Handle(command);
 }
}

The given configuration registers implementations for the IOrderRepository and ILogger interfaces, as well as registering the concrete class CancelOrderHandler. The code snippet shows a few interesting things. First of all, you can map concrete instances (such as SqlOrderRepository) to an interface or base type (such as IOrderRepository). In the given example, every time you ask the container for an IOrderRepository, it will always create a new SqlOrderRepository on your behalf (in DI terminology: an object with a Transient lifestyle).

The second registration maps the ILogger interface to a FileLogger implementation. This FileLogger is registered with the Singleton lifestyle—only one instance of FileLogger will ever be created by the Container.

Further more, you can map a concrete implementation to itself (as shown with the CancelOrderHandler). This registration is a short-hand for the following registration:

container.Register<CancelOrderHandler, CancelOrderHandler>();

This basically means, every time you request a CancelOrderHandler, you’ll get a new CancelOrderHandler.

Using this configuration, when a CancelOrderHandler is requested, the following object graph is constructed:

new CancelOrderHandler(
 new SqlOrderRepository(
 logger),
 logger);

Note that object graphs can become very deep. What you can see is that not only CancelOrderHandler contains dependencies—so does SqlOrderRepository. In this case SqlOrderRepository itself contains an ILogger dependency. Simple Injector will not only resolve the dependencies of CancelOrderHandler but will instead build a whole tree structure of any level deep for you.

And this is all it takes to start using Simple Injector. Design your classes around the SOLID principles and the Dependency Injection pattern (which is actually the hard part) and configure them during application initialization. Some frameworks (such as ASP.NET MVC) will do the rest for you, other frameworks (like ASP.NET Web Forms) will need a little bit more work. See the Integration Guide for examples of integrating with many common frameworks.

Please go to the Using Simple Injector section in the documentation to see more examples.

More information

For more information about Simple Injector please visit the following links:

	Using Simple Injector will guide you through the Simple Injector basics.

	The Object Lifetime Management page explains how to configure lifestyles such as Transient, Singleton, and many others.

	See the Reference library#5 for the complete API documentation.

	See the Integration Guide for more information about how to integrate Simple Injector into your specific application framework.

	For more information about dependency injection in general, please visit this page on Stackoverflow#6.

	If you have any questions about how to use Simple Injector or about dependency injection in general, the experts at Stackoverflow.com#7 are waiting for you.

	For all other Simple Injector related question and discussions, such as bug reports and feature requests, the Simple Injector discussion forum#8 will be the place to start.

	The book Dependency Injection Principles, Practices, and Patterns#9 presents core DI patterns in plain C# so you’ll fully understand how DI works.

Footnotes

	#1

	https://martinfowler.com/articles/injection.html

	#2

	https://simpleinjector.org/nuget

	#3

	https://en.wikipedia.org/wiki/Dependency_injection

	#4

	https://en.wikipedia.org/wiki/Dependency_inversion_principle

	#5

	https://simpleinjector.org/ReferenceLibrary/

	#6

	https://stackoverflow.com/tags/dependency-injection/info

	#7

	https://stackoverflow.com/questions/ask?tags=simple-injector%20ioc-container%20dependency-injection%20.net%20c%23

	#8

	https://simpleinjector.org/forum

	#9

	https://mng.bz/BYNl

Using Simple Injector

This section will walk you through the basics of Simple Injector. After reading this section, you will have a good idea how to use Simple Injector.

Good practice is to minimize the dependency between your application and the DI library. This increases the testability and the flexibility of your application, results in cleaner code, and makes it easier to migrate to another DI library (if ever required). The technique for keeping this dependency to a minimum can be achieved by designing the types in your application around the Constructor Injection pattern#1: Define all dependencies of a class in the single public constructor of that type; do this for all classes that need to be resolved and resolve only the top most types in the application directly (i.e. let the container build up the complete graph of dependent objects for you).

Simple Injector’s main type is the Container class. An instance of Container is used to register mappings between each abstraction (service) and its corresponding implementation (component). Your application code should depend on abstractions and it is the role of the Container to supply the application with the right implementation, based on the supplied configuration. As a mental model, you can view the Container as a big dictionary where the abstraction is the key, and each key’s related value is the definition of how to create that particular implementation. Each time the application requests a service, a look-up is made within the dictionary and the correct implementation instance is returned.

Tip: You should typically create a single Container instance for the whole application (one instance per app domain); Container instances are thread-safe.

Warning: Registering types in a Container instance should be done from one single thread. Requesting instances from the Container is thread-safe but registration of types is not.

Warning: Do not create an infinite number of Container instances (such as one Container instance per request). Doing so will drain the performance of your application. Simple Injector is optimized for using a very limited number of Container instances. Creating and initializing Container instances has a large overhead, but resolving from the Container is extremely fast once initialized.

Creating and configuring a Container is done by newing up an instance and calling the Register overloads to register each of your services:

var container = new SimpleInjector.Container();

// Registrations here
container.Register<ILogger, FileLogger>();

Ideally, the only place in an application that should directly reference and use Simple Injector is the startup path. For an ASP.NET Core application this will usually be the Startup class of the web application project. For a Windows Forms or console application this will be the Main method in the application assembly.

Tip: In the context of Dependency Injection, this start path is typically referred to as the Composition Root. It is good to familiarize you with the concept of the Composition Root. This article#2 is a great place to start. For an even more-detailed discussion of the Composition Root, read this book#3.

Tip: For more information about usage of Simple Injector for a specific technology, please see the Integration Guide.

The usage of Simple Injector consists of four to six steps:

	Create a new container

	Configure the container (Register)

	[Optionally] verify the container

	Store the container for use by the application

	Retrieve instances from the container (Resolve)

	[Optionally] Dispose the container instance when the application ends.

The first four steps are performed only once at application startup. The fifth step is usually performed multiple times (usually once per request) for the majority of applications. The first three steps are platform agnostic but the last three steps depend on a mix of personal preference and which presentation framework is being used. Below is an example for the configuration of an ASP.NET MVC application:

using System.Web.Mvc;
using SimpleInjector;
using SimpleInjector.Integration.Web.Mvc;

public class Global : System.Web.HttpApplication
{
 protected void Application_Start(object sender, EventArgs e)
 {
 // 1. Create a new Simple Injector container
 var container = new Container();

 // 2. Configure the container (register)
 // See below for more configuration examples
 container.Register<IUserService, UserService>(Lifestyle.Transient);
 container.Register<IUserRepository, SqlUserRepository>(Lifestyle.Singleton);

 // 3. Optionally verify the container's configuration.
 container.Verify();

 // 4. Store the container for use by the application
 DependencyResolver.SetResolver(
 new SimpleInjectorDependencyResolver(container));
 }
}

In the case of MVC, the fifth step is the responsibility of the MVC framework. For each received web requests, the MVC framework will map that request to a Controller type and ask the application’s IDependencyResolver to create an instance of that controller type. The registration of the SimpleInjectorDependencyResolver (part of the SimpleInjector.Integration.Web.Mvc.dll) will ensure that the request for creating an instance is forwarded on to Simple Injector. Simple Injector will create that controller with all of its nested dependencies.

The example below is a very basic MVC Controller:

using System;
using System.Web.Mvc;

public class UserController : Controller
{
 private readonly IUserRepository repository;
 private readonly ILogger logger;

 public UserController(IUserRepository repository, ILogger logger)
 {
 this.repository = repository;
 this.logger = logger;
 }

 [HttpGet]
 public ActionResult Index(Guid id)
 {
 this.logger.Log("Index called.");
 User user = this.repository.GetById(id);
 return this.View(user);
 }
}

Resolving instances

Simple Injector supports two scenarios for retrieving component instances:

	Getting an object by a specified type

var repository = container.GetInstance<IUserRepository>();

// Alternatively, you can use the weakly typed version
var repository = (IUserRepository)container.GetInstance(typeof(IUserRepository));

	Getting a collection of objects by their type

IEnumerable<ICommand> commands = container.GetAllInstances<ICommand>();

// Alternatively, you can use the weakly typed version
IEnumerable<object> commands = container.GetAllInstances(typeof(ICommand));

Configuring Simple Injector

The Container class consists of several methods that enable registering instances for retrieval when requested by the application. These methods enable most common scenarios. Here are many of these common scenarios with a code example for each:

Configuring an automatically constructed single instance (Singleton) to always be returned:

The following example configures a single instance of type RealUserService to always be returned when an instance of IUserService is requested. The RealUserService will be constructed using Auto-Wiring.

// Configuration
container.Register<IUserService, RealUserService>(Lifestyle.Singleton);

// Usage
IUserService service = container.GetInstance<IUserService>();

Important: instances that are declared as Singleton should be thread-safe in a multi-threaded environment.

Configuring a single—manually created—instance (Singleton) to always be returned:

The following example configures a single instance of a manually created object SqlUserRepository to always be returned when a type of IUserRepository is requested.

// Configuration
container.RegisterInstance<IUserRepository>(new SqlUserRepository());

// Usage
IUserRepository repository = container.GetInstance<IUserRepository>();

Note: Registering types using Auto-Wiring is the preferred method of registering types. Only new up instances manually when automatic constructor injection is not possible or when the constructor does not have any dependencies of its own.

Configuring a single instance using a delegate:

This example configures a single instance as a delegate. The Container will ensure that the delegate is only called once.

// Configuration
container.Register<IUserRepository>(() => new SqlUserRepository("some constr"),
 Lifestyle.Singleton);

// Usage
IUserRepository repository = container.GetInstance<IUserRepository>();

Note: It is recommended that registrations for your application components are made using the former Auto-Wiring overload, while registrations of components that are out of your control (e.g. framework or third-party components) are made using the latter delegate overload. This typically results in the most maintainable Composition Root.

Configuring an automatically constructed new instance to be returned:

By supplying the service type and the created implementation as generic types, the container can create new instances of the implementation (MoveCustomerHandler in this case) by Auto-Wiring.

// Configuration
container.Register<IHandler<MoveCustomerCommand>, MoveCustomerHandler>();

// Alternatively you can supply the transient Lifestyle with the same effect.
container.Register<IHandler<MoveCustomerCommand>, MoveCustomerHandler>(
 Lifestyle.Transient);

// Usage
var handler = container.GetInstance<IHandler<MoveCustomerCommand>>();

Configuring a new instance to be returned on each call using a delegate:

By supplying a delegate, types can be registered that cannot be created by using Auto-Wiring.

By referencing the Container instance within the delegate, the Container can still manage as much of the object creation work as possible:

// Configuration
container.Register<IHandler<MoveCustomerCommand>>(() => {
 // Get a new instance of the concrete MoveCustomerHandler class:
 var handler = container.GetInstance<MoveCustomerHandler>();

 // Configure the handler:
 handler.ExecuteAsynchronously = true;

 return handler;
});

container.Register<IHandler<MoveCustomerCommand>>(() => { ... }, Lifestyle.Transient);
// Alternatively you can supply the transient Lifestyle with the same effect.
// Usage
var handler = container.GetInstance<IHandler<MoveCustomerCommand>>();

Initializing auto-wired instances:

For types that need to be injected we recommend that you define a single public constructor that contains all dependencies. In scenarios where its impossible to fully configure a type using constructor injection, the RegisterInitializer method can be used to add additional initialization for such type. The previous example showed an example of property injection but a more preferred approach is to use the RegisterInitializer method:

// Configuration
container.Register<IHandler<MoveCustomerCommand>>, MoveCustomerHandler>();
container.Register<IHandler<ShipOrderCommand>>, ShipOrderHandler>();

// IHandler<T> implements IHandler
container.RegisterInitializer<IHandler>(handlerToInitialize =>
{
 handlerToInitialize.ExecuteAsynchronously = true;
});

// Usage
var handler1 = container.GetInstance<IHandler<MoveCustomerCommand>>();
Assert.IsTrue(handler1.ExecuteAsynchronously);

var handler2 = container.GetInstance<IHandler<ShipOrderCommand>>();
Assert.IsTrue(handler2.ExecuteAsynchronously);

The Action<T> delegate that is registered by the RegisterInitializer method is called once the Container has created a new instance of T (or any instance that inherits from or implements T depending on exactly how you have configured your registrations). In the example MoveCustomerHandler implements IHandler and because of this the Action<IHandler> delegate will be called with a reference to the newly created instance.

Note: The Container will not be able to call an initializer delegate on a type that is manually constructed using the new operator. Use Auto-Wiring whenever possible.

Tip: Multiple initializers can be applied to a concrete type and the Container will call all initializers that apply. They are guaranteed to run in the same order that they are registered.

Auto-Registration/Batch-registration

When an application starts to grow, so does the number of types to register in the container. This can cause a lot of maintenance on part of your application that holds your container registration. When working with a team, you’ll start to experience many merge conflicts which increases the chance of errors.

To minimize these problems, Simple Injector allows groups of types to be registered with a few lines of code. Especially when registering a family of types that are defined using the same (generic) interface. For instance, the previous example with the IHandler<T> registrations can be reduced to the following code:

// Configuration
Assembly[] assemblies = // determine list of assemblies to search in
container.Register(typeof(IHandler<>), assemblies);

When supplying a list of assemblies to the Register method, Simple Injector goes through the assemblies and registers all types that implement the given interface. In this example, an open-generic type (IHandler<T>) is supplied. Simple Injector will automatically find all implementations of this interface.

Note: For more information about batch registration, please see the Batch-registration section.

Collections

Besides making one-to-one mappings between an abstraction and an implementation, Simple Injector allows a set of implementations to be registered for a given abstraction. Those implementations can than be requested from the container as a collection of instances. Simple Injector contains dedicated methods for registering and resolving collections of types.

Note: In contrast to most other DI Containers, Simple Injector differentiates between the registration of collections of services from normal one-to-one registrations. To learn more about why this is done, please read this.

Here are some examples that show how collections can be registered and resolved:

// Configuration
// Registering a list of instances that will be created by the container.
// Supplying a collection of types is the preferred way of registering collections.
container.Collection.Register<ILogger>(typeof(MailLogger), typeof(SqlLogger));

// Register a fixed list (these instances should be thread-safe).
container.Collection.Register<ILogger>(new MailLogger(), new SqlLogger());

// Using a collection from another subsystem
container.Collection.Register<ILogger>(Logger.Providers);

// Usage
IEnumerable<ILogger> loggers = container.GetAllInstances<ILogger>();

Note: When zero instances are registered using Collection.Register, each call to Container.GetAllInstances will return an empty list.

Warning: Simple Injector requires a call to Collection.Register to be made, even in the absence of any instances. Without a call to Collection.Register, Simple Injector will throw an exception.

Just as with normal types, Simple Injector can inject collections of instances into constructors:

// Definition
public class Service : IService
{
 private readonly IEnumerable<ILogger> loggers;

 public Service(IEnumerable<ILogger> loggers)
 {
 this.loggers = loggers;
 }

 void IService.DoStuff()
 {
 // Log to all loggers
 foreach (var logger in this.loggers)
 {
 logger.Log("Some message");
 }
 }
}

// Configuration
container.Collection.Register<ILogger>(typeof(MailLogger), typeof(SqlLogger));
container.Register<IService, Service>(Lifestyle.Singleton);

// Usage
var service = container.GetInstance<IService>();
service.DoStuff();

The Collection.Register overloads that take a collection of Type instances rely on the Container to create an instance of each type just as it would for individual registrations. This means that the same rules we have seen above apply to each item in the collection. Take a look at the following configuration:

// Configuration
container.Register<MailLogger>(Lifestyle.Singleton);
container.RegisterInstance<ILogger>(new FileLogger());

container.Collection.Register<ILogger>(
 typeof(MailLogger),
 typeof(SqlLogger),
 typeof(ILogger));

When the registered collection of ILogger instances are resolved, the Container will resolve each of them applying the specific rules of their configuration. When no registration exists, the type is created with the default Transient lifestyle (transient means that a new instance is created every time the returned collection is iterated). In the example, the MailLogger type is registered as Singleton, and so each resolved ILogger collection will always have the same instance of MailLogger in their collection.

Because the creation is forwarded, abstract types can also be registered using Collection.Register. In the above example the ILogger type itself is registered using Collection.Register. This seems like a recursive definition, but it will work nonetheless. In this particular case you could imagine this to be a registration with a default ILogger registration which is also included in the collection of ILogger instances as well. A more usual scenario however is the use of a composite as shown below.

Alternatively, if the components of the collections are supplied explicity, as the previous example shows, opposed to supplying an assembly instance, the Collection.Append method can be used to achieve the same:

container.Register<ILogger, FileLogger>();

container.Collection.Append<ILogger, MailLogger>(Lifestyle.Singleton);
container.Collection.Append<ILogger, SqlLogger>();
container.Collection.AppendInstance<ILogger>(new FileLogger>());

This set of registrations is identical to the previous construct using Collection.Register.

While resolving collections is useful and also works with automatic constructor injection, the registration of Composites is preferred over the use of collections as constructor arguments in application code. Register a composite whenever possible, as shown in the example below:

// Definition
public class CompositeLogger : ILogger
{
 private readonly IEnumerable<ILogger> loggers;

 public CompositeLogger(IEnumerable<ILogger> loggers)
 {
 this.loggers = loggers;
 }

 public void Log(string message)
 {
 foreach (var logger in this.loggers)
 {
 logger.Log(message);
 }
 }
}

// Configuration
container.Register<IService, Service>(Lifestyle.Singleton);
container.Register<ILogger, CompositeLogger>(Lifestyle.Singleton);
container.Collection.Register<ILogger>(typeof(MailLogger), typeof(SqlLogger));

// Usage
var service = container.GetInstance<IService>();
service.DoStuff();

When using this approach none of your services (except CompositeLogger) need a dependency on IEnumerable<ILogger>—they can all simply have a dependency on the ILogger interface itself.

Collection types

Besides IEnumerable<ILogger>, Simple Injector natively supports other collection types as well. The following types are supported:

	IEnumerable<T>

	ICollection<T>

	IList<T>

	IReadOnlyCollection<T> (.NET >= v4.5 and .NET Standard only)

	IReadOnlyList<T> (.NET >= v4.5 and .NET Standard only)

	Collection<T> (Simple Injector >= v4.4)

	T[] (array)

	List<T> (Simple Injector >= v4.4)

Note: The IReadOnlyCollection<T> and IReadOnlyList<T> interfaces are new in .NET 4.5. Only the .NET 4.5 and .NET Standard (including .NET Core and Xamarin) builds of Simple Injector will be able to automatically inject these abstractions into your components. These interfaces are not supported by the .NET 4.0 version of Simple Injector.

Simple Injector preserves the lifestyle of instances that are returned from an injected IEnumerable<T>, ICollection<T>, Collection<T>, IList<T>, IReadOnlyCollection<T> and IReadOnlyList<T> instance. In reality you should not see the injected IEnumerable<T> as a collection of instances—you should consider it a stream of instances. Simple Injector will always inject a reference to the same stream (the IEnumerable<T> or ICollection<T> itself is a singleton) and each time you iterate the IEnumerable<T>, for each individual component, the container is asked to resolve the instance based on the lifestyle of that component.

Warning: In contrast to the collection abstractions, array and List<T> are registered as Transient. Array and List<T> are a mutable types; a consumer can change the contents of such collection. Sharing it (by making it singleton) might cause unrelated parts of your applications to fail when changes are made to it. Because an array and List<T> are concrete types, they can not function as a stream, causing the elements in the array to get the lifetime of the consuming component. This could cause lifestyle mismatches when the array wasn’t registered as transient.

Auto-registering collections

Just as with one-to-one mappings, Simple Injector allows collections of types to be auto-registered. There are overloads of the Collection.Register method that accept a list of Assembly instances. Simple Injector will go through those assemblies to look for implementations of the supplied type:

Assembly[] assemblies = // determine list of assemblies to search in
container.Collection.Register<ILogger>(assemblies);

The previous code snippet will register all ILogger implementations that can be found in the supplied assemblies as part of the collection.

Warning: This Collection.Register overload will request all the types from the supplied Assembly instances. The CLR however does not give any guarantees whatsoever about the order in which these types are returned. Don’t be surprised if the order of these types in the collection change after a recompile or an application restart.

Note: For more information about batch registration, please see the Auto-registration section.

Adding registrations to an existing collection

In most cases you would register a collection with a single line of code. There are cases where you need to append registrations to an already registered collection. Common use cases for this are integration scenarios where you need to interact with some DI Containers that made its own registrations on your behalf, or in cases where you want to add extra types based on configuration settings. In these cases it might be benifecial to append registrations to an existing collection.

To be able to do this, Simple Injector contains the Collection.Append method.

Assembly[] assemblies = // determine list of assemblies to search in
container.Collection.Register<ILogger>(assemblies);

container.Collection.Append<ILogger, ExtraLogger>();

Verifying the container’s configuration

You can call the Verify method of the Container. The Verify method provides a fail-fast mechanism to prevent your application from starting when the Container has been accidentally misconfigured. The Verify method checks the entire configuration by creating an instance of each registered type.

Tip: Calling Verify is not required, but is highly encouraged.

For more information about creating an application and container configuration that can be successfully verified, please read the How To Verify the container’s configuration.

Automatic constructor injection / auto-wiring

Simple Injector uses the public constructor of a registered type and analyzes each constructor argument. The Container will resolve an instance for each argument type and then invoke the constructor using those instances. This mechanism is called Auto-Wiring and is one of the fundamental features that separates a DI Container from applying DI by hand.

Simple Injector has the following prerequisites to be able to provide auto-wiring:

	Each type to be created must be concrete (not abstract, an interface or an open-generic type). Types may be internal, although this can be limited if you’re running in a sandbox (e.g. Silverlight or Windows Phone).

	The type should have one public constructor (this may be a default constructor).

	All the types of the arguments in that constructor must be resolvable by the Container; optional arguments are not supported.

Tip: Even though Simple Injector can create a concrete type even if it hasn’t been registered explicitly in the container, best practice is to register all types explicitly in the container.

The following code shows an example of the use of automatic constructor injection. The example shows an IUserRepository interface with a concrete SqlUserRepository implementation and a concrete UserService class. The UserService class has one public constructor with an IUserRepository argument. Because the dependencies of the UserService are registered, Simple Injector is able to create a new UserService instance.

// Definitions
public interface IUserRepository { }
public class SqlUserRepository : IUserRepository { }

public class UserService : IUserService
{
 private readonly IUserRepository repository;
 public UserService(IUserRepository repository)
 {
 this.repository = repository;
 }
}

// Configuration
var container = new Container();

container.Register<IUserRepository, SqlUserRepository>(Lifestyle.Singleton);
container.Register<IUserService, UserService>(Lifestyle.Singleton);

// Usage
var service = container.GetInstance<IUserService>();

More information

For more information about Simple Injector please visit the following links:

	The Object Lifetime Management page explains how to configure lifestyles such as transient, singleton, and many others.

	See the Integration Guide for more information about how to integrate Simple Injector into your specific application framework.

	For more information about dependency injection in general, please visit this page on Stackoverflow#4.

	If you have any questions about how to use Simple Injector or about dependency injection in general, the experts at Stackoverflow.com#5 are waiting for you.

	For all other Simple Injector related question and discussions, such as bug reports and feature requests, the Simple Injector discussion forum#6 will be the place to start.

	The book Dependency Injection Principles, Practices, and Patterns#7 presents core DI patterns in plain C# so you’ll fully understand how DI works.

Footnotes

	#1

	https://mng.bz/oN9j

	#2

	https://mng.bz/K1qZ

	#3

	https://mng.bz/BYNl

	#4

	https://stackoverflow.com/tags/dependency-injection/info

	#5

	https://stackoverflow.com/questions/ask?tags=simple-injector%20ioc-container%20dependency-injection%20.net%20c%23

	#6

	https://simpleinjector.org/forum

	#7

	https://mng.bz/BYNl

Object Lifetime Management

Object Lifetime Management is the concept of controlling the number of instances a configured service will have and the duration of the lifetime of those instances. In other words, it allows you to determine how returned instances are cached. Most DI libraries have sophisticated mechanisms for lifestyle management, and Simple Injector is no exception with built-in support for the most common lifestyles. The three default lifestyles (transient, scoped and singleton) are part of the core library. Implementations for the scoped lifestyle can be found within some of the extension and integration packages. The built-in lifestyles will suit about 99% of cases. For anything else custom lifestyles can be used.

Below is a list of the most common lifestyles with code examples of how to configure them using Simple Injector:

	Lifestyle

	Description

	Disposal

	Transient

	A new instance of the component will be created each time the
service is requested from the container. If multiple consumers depend
on the service within the same graph, each consumer will get its own
new instance of the given service.

	Never

	Scoped

	For every request within an implicitly or explicitly defined scope.

	Instances will be disposed
when their scope ends.

	Singleton

	There will be at most one instance of the registered service type and
the container will hold on to that instance until the container is
disposed or goes out of scope. Clients will always receive that same
instance from the container.

	Instances will be disposed
when the container is
disposed.

Many different platform and framework-specific flavors are available for the Scoped lifestyle. Please see the Scoped section for more information.

Further reading:

	Per Graph

	Instance Per Dependency

	Per Thread

	Per HTTP Session

	Hybrid

	Developing a Custom Lifestyle

Transient Lifestyle

A new instance of the service type will be created each time the service is requested from the container. If multiple consumers depend on the service within the same graph, each consumer will get its own new instance of the given service.

This example instantiates a new IService implementation for each call, while leveraging the power of Auto-Wiring.

container.Register<IService, RealService>(Lifestyle.Transient);

// Alternatively, you can use the following short cut
container.Register<IService, RealService>();

The next example instantiates a new RealService instance on each call by using a delegate.

container.Register<IService>(
 () => new RealService(new SqlRepository()),
 Lifestyle.Transient);

Note: It is recommended that registrations for your application components are made using the former Auto-Wiring overload, while registrations of components that are out of your control (e.g. framework or third-party components) are made using the latter delegate overload. This typically results in the most maintainable Composition Root#1.

Simple Injector considers Transient registrations to be lasting for only a short time; temporary, i.e. short lived and not reused. For that reason, Simple Injector prevents the injection of Transient components into Scoped and Singleton consumers as they are expected to be longer lived, which would otherwise result in Lifestyle Mismatches.

Warning: Transient instances are not tracked by the container as tracking transient instances is a common source of memory leaks. This means that Simple Injector can’t dispose transient instances as that would require tracking. Simple Injector detects disposable instances that are registered as transient when calling container.Verify(). Please view Diagnostic Warning - Disposable Transient Components for more information.

Singleton Lifestyle

There will be at most one instance of the registered service type and the container will hold on to that instance until the container is disposed or goes out of scope. Clients will always receive that same instance from the container.

There are multiple ways to register singletons. The most simple and common way to do this is by specifying both the service type and the implementation as generic type arguments. This allows the implementation type to be constructed using automatic constructor injection:

container.Register<IService, RealService>(Lifestyle.Singleton);

You can also use the RegisterInstance<T>(T) method to assign a constructed instance manually:

var service = new RealService(new SqlRepository());
container.RegisterInstance<IService>(service);

There is also a RegisterSingleton<T> overload that takes an Func<T> delegate. The container guarantees that this delegate is called only once:

container.Register<IService>(
 () => new RealService(new SqlRepository()),
 Lifestyle.Singleton);

// Or alternatively:
container.RegisterSingleton<IService>(() => new RealService(new SqlRepository()));

Alternatively, when needing to register a concrete type as singleton, you can use the parameterless RegisterSingleton<T>() overload. This will inform the container to automatically construct that concrete type (at most) once, and return that instance on each request:

container.RegisterSingleton<RealService>();

// Which is a more convenient short cut for:
container.Register<RealService, RealService>(Lifestyle.Singleton);

Warning: Simple Injector guarantees that there is at most one instance of the registered Singleton inside that Container instance, but if multiple Container instances are created, each Container instance will get its own instance of the registered Singleton.

Note: Simple Injector will cache a Singleton instance for the lifetime of the Container instance and will dispose any auto-wired instance (that implements IDisposable) when Container.Dispose() is called. This includes registrations using RegisterSingleton<TService, TImplementation>(), RegisterSingleton<TConcrete>() and RegisterSingleton(Type, Type). Non-auto-wired instances that are created using factory delegates will be disposed as well. This includes RegisterSingleton<TService>(Func<TService>) and RegisterSingleton(Type, Func<object>).

Warning: Already existing instances that are supplied to the container using RegisterInstance<TService>(TService) and RegisterInstance(Type, object) will not be disposed by the container. They are considered to be ‘externally owned’.

Note: Simple Injector guarantees that instances are disposed in opposite order of creation. See: Order of disposal for more information.

Scoped Lifestyle

For every request within an implicitly or explicitly defined scope, a single instance of the service will be returned and that instance will be disposed when the scope ends.

The Scoped lifestyle behaves much like the Singleton lifestyle within a single, well-defined scope or request. A Scoped instance, however, isn’t shared across scopes. Each scope has its own cache of associated dependencies.

The Scoped lifestyle is useful for applications where you run a single operation in an isolated manner. Web applications are a great example, as you want to run a request in isolation from other requests. The same can hold for desktop applications. A press of a button can be seen as a form of a request, and you might wish to isolate such request. This can be done with the use of the Scoped lifestyle.

In frameworks where Simple Injector supplies out-of-the-box integration for (see the integration guide), the integration package will typically wrap a scope around a request on your behalf. This is what we call an implicitly defined scope, as you are not responsible for defining the scope–the integration package is.

In other situations, where there is no integration package available or, alternatively, you wish to start an operation outside the facilities that the integration package provides, you should start your own scope. This can happen when you wish to run an operation on a background thread of a web application, or when you want start a new operation when running inside a Windows service. When you manage the scope yourself, we call this an explicitly defined scope, as you are directly responsible for the creation and disposing of that scope.

Simple Injector contains the following scoped lifestyles:

	Lifestyle

	Description

	Disposal

	Thread Scoped

	Within a certain (explicitly defined) scope, there will be only one
instance of a given service type A created scope is specific to one
particular thread, and can’t be moved across threads.

	Instance will be disposed
when their scope gets
disposed.

	Async Scoped

	There will be only one instance of a given service type within a
certain (explicitly defined) scope. This scope will automatically
flow with the logical flow of control of asynchronous methods.

	Instance will be disposed
when their scope gets
disposed.

	Web Request

	Only one instance will be created by the container per web request.
Use this lifestyle in ASP.NET Web Forms and ASP.NET MVC applications.

	Instances will be disposed
when the web request ends.

	WCF Operation

	Only one instance will be created by the container during the lifetime
of the WCF service class.

	Instances will be disposed
when the WCF service class
is released.

Web Request and WCF Operation implement scoping implicitly, which means that the user does not have to start or finish the scope to allow the lifestyle to end and to dispose cached instances. The Container does this for you. With the Thread Scoped and Async Scoped lifestyles on the other hand, you explicitly define a scope (just like you would do with .NET’s TransactionScope class).

Most of the time, you will only use one particular scoped lifestyle per application. To simplify this, Simple Injector allows configuring the default scoped lifestyle in the container. After configuring the default scoped lifestyle, the rest of the configuration can access this lifestyle by calling Lifestyle.Scoped, as can be seen in the following example:

var container = new Container();
// Set the scoped lifestyle one directly after creating the container
container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

// Use the Lifestyle.Scoped everywhere in your configuration.
container.Register<IUserContext, AspNetUserContext>(Lifestyle.Scoped);
container.Register<MyAppUnitOfWork>(() => new MyAppUnitOfWork("constr"),
 Lifestyle.Scoped);

Just like Singleton registrations, instances of scoped registrations that are created by the container will be disposed when the their scope ends. Scoped lifestyles are especially useful for implementing patterns such as the Unit of Work#2.

Order of disposal

Simple Injector guarantees that instances are disposed in opposite order of their creation.

When a component A depends on component B, B will be created before A. This means that A will be disposed before B (assuming both implement IDisposable). This allows A to use B while A is being disposed.

Retrieving list of container-created disposables

By calling Scope.GetDisposables, the scope’s created, and cached, Scoped instances that implement IDisposable are returned. This list of instances will get disposed automatically, when the Scope instance is disposed.

Retrieving the disposable instances can be especially beneficial whenever you require asynchronous disposal. It is impossible for Simple Injector to apply asynchronous disposal, because that requires a framework-supplied abstraction that allows asynchronous disposal, e.g an IAsyncDisposable. Such abstraction however does not exist (yet).

To mitigate this, you can define your own abstraction that allows disposable objects to flush themselves asynchronously, in such way that their Dispose() method will not cause any blocking operations. Using the Scope.GetDisposables method, the following code can be used before disposing the Scope instance:

foreach (var flushable in scope.GetDisposables().OfType<IAsyncFlushable>().Reverse())
{
 await flushable.FlushAsync();
}

The same method can be applied when asynchronously disposing instances that are created with the Singleton lifestyle. Those instances are not stored in a request-specific Scope instance, but stored for the lifetime of the container. The following code can be used before disposing the Container instance:

var disposabless = container.ContainerScope.GetDisposables();
foreach (var flushable in disposables.OfType<IAsyncFlushable>().Reverse())
{
 await flushable.FlushAsync();
}

container.Dispose();

Note: The Container.ContainerScope property is new in v4.5.

Thread Scoped Lifestyle

Within a certain (explicitly defined) scope, there will be only one instance of a given service type in that thread and the instance will be disposed when the scope ends. A created scope is specific to one particular thread, and can’t be moved across threads.

Warning: A thread scoped lifestyle can’t be used for asynchronous operations (using the async/await keywords in C#).

SimpleInjector.Lifestyles.ThreadScopedLifestyle is part of the Simple Injector core library. The following examples shows its typical usage:

var container = new Container();
container.Options.DefaultScopedLifestyle = new ThreadScopedLifestyle();

container.Register<IUnitOfWork, NorthwindContext>(Lifestyle.Scoped);

Within an explicitly defined scope, there will be only one instance of a service that is defined with the Thread Scoped lifestyle:

using (ThreadScopedLifestyle.BeginScope(container))
{
 var uow1 = container.GetInstance<IUnitOfWork>();
 var uow2 = container.GetInstance<IUnitOfWork>();

 Assert.AreSame(uow1, uow2);
}

Warning: The ThreadScopedLifestyle is thread-specific. A single scope should not be used over multiple threads. Do not pass a scope between threads and do not wrap an ASP.NET HTTP request with a ThreadScopedLifestyle, since ASP.NET can finish a web request on different thread to the thread the request is started on. Use Web Request Lifestyle scoping for ASP.NET Web Forms and MVC web applications while running inside a web request. Use Async Scoped Lifestyle when using ASP.NET Web API or ASP.NET Core. ThreadScopedLifestyle however, can still be used in web applications on background threads that are created by web requests or when processing commands in a Windows Service (where each command gets its own scope). For developing multi-threaded applications, take these guidelines into consideration.

Outside the context of a thread scoped lifestyle, i.e. using (ThreadScopedLifestyle.BeginScope(container)) no instances can be created. An exception is thrown when a thread scoped registration is requested outside of a scope instance.

Scopes can be nested and each scope will get its own set of instances:

using (ThreadScopedLifestyle.BeginScope(container))
{
 var outer1 = container.GetInstance<IUnitOfWork>();
 var outer2 = container.GetInstance<IUnitOfWork>();

 Assert.AreSame(outer1, outer2);

 using (ThreadScopedLifestyle.BeginScope(container))
 {
 var inner1 = container.GetInstance<IUnitOfWork>();
 var inner2 = container.GetInstance<IUnitOfWork>();

 Assert.AreSame(inner1, inner2);

 Assert.AreNotSame(outer1, inner1);
 }
}

Async Scoped Lifestyle (async/await)

There will be only one instance of a given service type within a certain (explicitly defined) scope and that instance will be disposed when the scope ends. This scope will automatically flow with the logical flow of control of asynchronous methods.

This lifestyle is meant for applications that work with the new asynchronous programming model.

SimpleInjector.Lifestyles.AsyncScopedLifestyle is part of the Simple Injector core library. The following examples shows its typical usage:

var container = new Container();
container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

container.Register<IUnitOfWork, NorthwindContext>(Lifestyle.Scoped);

Within an explicitly defined scope, there will be only one instance of a service that is defined with the Async Scoped lifestyle:

using (AsyncScopedLifestyle.BeginScope(container))
{
 var uow1 = container.GetInstance<IUnitOfWork>();
 await SomeAsyncOperation();
 var uow2 = container.GetInstance<IUnitOfWork>();
 await SomeOtherAsyncOperation();

 Assert.AreSame(uow1, uow2);
}

Note: A scope is specific to the asynchronous flow. A method call on a different (unrelated) thread, will get its own scope.

Outside the context of an active async scope no instances can be created. An exception is thrown when this happens.

Scopes can be nested and each scope will get its own set of instances:

using (AsyncScopedLifestyle.BeginScope(container))
{
 var outer1 = container.GetInstance<IUnitOfWork>();
 await SomeAsyncOperation();
 var outer2 = container.GetInstance<IUnitOfWork>();

 Assert.AreSame(outer1, outer2);

 using (AsyncScopedLifestyle.BeginScope(container))
 {
 var inner1 = container.GetInstance<IUnitOfWork>();

 await SomeOtherAsyncOperation();

 var inner2 = container.GetInstance<IUnitOfWork>();

 Assert.AreSame(inner1, inner2);

 Assert.AreNotSame(outer1, inner1);
 }
}

Web Request Lifestyle

Only one instance will be created by the container per web request and the instance will be disposed when the web request ends.

The ASP.NET Integration NuGet Package#3 is available (and available as SimpleInjector.Integration.Web.dll in the default download) contains a WebRequestLifestyle class that enable easy Per Web Request registrations:

var container = new Container();
container.Options.DefaultScopedLifestyle = new WebRequestLifestyle();

container.Register<IUserRepository, SqlUserRepository>(Lifestyle.Scoped);
container.Register<IOrderRepository, SqlOrderRepository>(Lifestyle.Scoped);

Tip: For ASP.NET MVC, there’s a Simple Injector MVC Integration Quick Start#4 NuGet Package available that helps you get started with Simple Injector in MVC applications quickly.

Async Scoped lifestyle vs. Web Request lifestyle

The lifestyles and scope implementations Web Request and Async Scoped in Simple Injector are based on different technologies. AsyncScopedLifestyle works well both inside and outside of IIS. i.e. It can function in a self-hosted Web API project where there is no HttpContext.Current. As the name implies, an async scope registers itself and flows with async operations across threads (e.g. a continuation after await on a different thread still has access to the scope regardless of whether ConfigureAwait() was used with true or false).

In contrast, the Scope of the WebRequestLifestyle is stored within the HttpContext.Items dictionary. The HttpContext can be used with Web API when it is hosted in IIS but care must be taken because it will not always flow with the async operation, because the current HttpContext is stored in the IllogicalCallContext (see Understanding SynchronizationContext in ASP.NET#5). If you use await with ConfigureAwait(false) the continuation may lose track of the original HttpContext whenever the async operation does not execute synchronously. A direct effect of this is that it would no longer be possible to resolve the instance of a previously created service with WebRequestLifestyle from the container (e.g. in a factory that has access to the container) - and an exception would be thrown because HttpContext.Current would be null.

The recommendation is to use AsyncScopedLifestyle in applications that solely consist of a Web API (or other asynchronous technologies such as ASP.NET Core) and use WebRequestLifestyle for applications that contain a mixture of Web API and MVC.

AsyncScopedLifestyle offers the following benefits when used in Web API:

	The Web API controller can be used outside of IIS (e.g. in a self-hosted project)

	The Web API controller can execute free-threaded (or multi-threaded) async methods because it is not limited to the ASP.NET SynchronizationContext.

For more information, check out the blog entry of Stephen Toub regarding the difference between ExecutionContext and
SynchronizationContext#6.

WCF Operation Lifestyle

Only one instance will be created by the container during the lifetime of the WCF service class and the instance will be disposed when the WCF service class is released.

The WCF Integration NuGet Package#7 is available (and available as SimpleInjector.Integration.Wcf.dll in the default download) contains a WcfOperationLifestyle class that enable easy Per WCF Operation registrations:

var container = new Container();
container.Options.DefaultScopedLifestyle = new WcfOperationLifestyle();

container.Register<IUserRepository, SqlUserRepository>(Lifestyle.Scoped);
container.Register<IOrderRepository, SqlOrderRepository>(Lifestyle.Scoped);

Warning: Instead of what the name of the WcfOperationLifestyle class seems to imply, components that are registered with this lifestyle might actually outlive a single WCF operation. This behavior depends on how the WCF service class is configured. WCF is in control of the lifetime of the service class and contains three lifetime types as defined by the InstanceContextMode enumeration#8. Components that are registered PerWcfOperation live as long as the WCF service class they are injected into.

For more information about integrating Simple Injector with WCF, please see the WCF integration guide.

Per Graph Lifestyle

For each explicit call to Container.GetInstance<T> a new instance of the service type will be created, but the instance will be reused within the object graph that gets constructed.

Compared to Transient, there will be just a single instance per explicit call to the container, while Transient services can have multiple new instances per explicit call to the container. This lifestyle is not supported by Simple Injector but can be simulated by using one of the Scoped lifestyles.

Instance Per Dependency Lifestyle

Each consumer will get a new instance of the given service type and that dependency is expected to get live as long as its consuming type.

This lifestyle behaves the same as the built-in Transient lifestyle, but the intend is completely different. A Transient instance is expected to have a very short lifestyle and injecting it into a consumer with a longer lifestyle (such as Singleton) is an error. Simple Injector will prevent this from happening by checking for lifestyle mismatches. With the Instance Per Dependency lifestyle on the other hand, the created component is expected to stay alive as long as the consuming component does. So when the Instance Per Dependency component is injected into a Singleton component, we intend it to be kept alive by its consumer.

This lifestyle is deliberately left out of Simple Injector, because its usefulness is very limited compared to the Transient lifestyle. It ignores lifestyle mismatch checks and this can easily lead to errors, and it ignores the fact that application components should be immutable. In case a component is immutable, it’s very unlikely that each consumer requires its own instance of the injected dependency.

Per Thread Lifestyle

There will be one instance of the registered service type per thread.

This lifestyle is deliberately left out of Simple Injector because it is considered to be harmful. Instead of using Per-Thread lifestyle, you will usually be better of using the Thread Scoped Lifestyle.

Per HTTP Session Lifestyle

There will be one instance of the registered service per (user) session in a ASP.NET web application.

This lifestyle is deliberately left out of Simple Injector because it is be used with care#9. Instead of using Per HTTP Session lifestyle, you will usually be better of by writing a stateless service that can be registered as singleton and let it communicate with the ASP.NET Session cache to handle cached user-specific data.

Hybrid Lifestyle

A hybrid lifestyle is a mix between two or more lifestyles where the the developer defines the context for which the wrapped lifestyles hold.

Simple Injector has no built-in hybrid lifestyles, but has a simple mechanism for defining them:

var container = new Container();

container.Options.DefaultScopedLifestyle = Lifestyle.CreateHybrid(
 defaultLifestyle: new ThreadScopedLifestyle(),
 fallbackLifestyle: new WebRequestLifestyle());

container.Register<IUserRepository, SqlUserRepository>(Lifestyle.Scoped);
container.Register<ICustomerRepository, SqlCustomerRepository>(Lifestyle.Scoped);

In the example a hybrid lifestyle is defined wrapping the Thread Scoped Lifestyle and the Web Request Lifestyle. This hybrid lifestyle will use the ThreadScopedLifestyle, but will fall back to the WebRequestLifestyle in case there is no active thread scope.

A hybrid lifestyle is useful for registrations that need to be able to dynamically switch lifestyles throughout the lifetime of the application. The shown hybrid example might be useful in a web application, where some operations need to be run in isolation (with their own instances of scoped registrations such as unit of works) or run outside the context of an HttpContext (in a background thread for instance).

Please note though that when the lifestyle doesn’t have to change throughout the lifetime of the application, a hybrid lifestyle is not needed. A normal lifestyle can be registered instead:

bool runsOnWebServer = ReadConfigurationValue<bool>("RunsOnWebServer");

var container = new Container();
container.Options.DefaultScopedLifestyle =
 runsOnWebServer ? new WebRequestLifestyle() : new ThreadScopedLifestyle();

container.Register<IUserRepository, SqlUserRepository>(Lifestyle.Scoped);
container.Register<ICustomerRepository, SqlCustomerRepository>(Lifestyle.Scoped);

Developing a Custom Lifestyle

The lifestyles supplied by Simple Injector should be sufficient for most scenarios, but in rare circumstances defining a custom lifestyle might be useful. This can be done by creating a class that inherits from Lifestyle#10 and let it return Custom Registration#11 instances. This however is a lot of work, and a shortcut is available in the form of the Lifestyle.CreateCustom#12.

A custom lifestyle can be created by calling the Lifestyle.CreateCustom factory method. This method takes two arguments: the name of the lifestyle to create (used mainly by the Diagnostic Services) and a CreateLifestyleApplier#13 delegate:

public delegate Func<object> CreateLifestyleApplier(
 Func<object> transientInstanceCreator)

The CreateLifestyleApplier delegate accepts a Func<object> that allows the creation of a transient instance of the registered type. This Func<object> is created by Simple Injector supplied to the registered CreateLifestyleApplier delegate for the registered type. When this Func<object> delegate is called, the creation of the type goes through the Simple Injector pipeline. This keeps the experience consistent with the rest of the library.

When Simple Injector calls the CreateLifestyleApplier, it is your job to return another Func<object> delegate that applies the caching based on the supplied instanceCreator. A simple example would be the following:

var sillyTransientLifestyle = Lifestyle.CreateCustom(
 name: "Silly Transient",
 // instanceCreator is of type Func<object>
 lifestyleApplierFactory: instanceCreator =>
 {
 // A Func<object> is returned that applies caching.
 return () => instanceCreator.Invoke();
 });

var container = new Container();

container.Register<IService, MyService>(sillyTransientLifestyle);

Here we create a custom lifestyle that applies no caching and simply returns a delegate that will on invocation always call the wrapped instanceCreator. Of course this would be rather useless and using the built-in Lifestyle.Transient would be much better in this case. It does however demonstrate its use.

The Func<object> delegate that you return from your CreateLifestyleApplier delegate will get cached by Simple Injector per registration. Simple Injector will call the delegate once per registration and stores the returned Func<object> for reuse. This means that each registration will get its own Func<object>.

Here’s an example of the creation of a more useful custom lifestyle that caches an instance for 10 minutes:

var tenMinuteLifestyle = Lifestyle.CreateCustom(
 name: "Absolute 10 Minute Expiration",
 lifestyleApplierFactory: instanceCreator =>
 {
 TimeSpan timeout = TimeSpan.FromMinutes(10);
 var syncRoot = new object();
 var expirationTime = DateTime.MinValue;
 object instance = null;

 return () =>
 {
 lock (syncRoot)
 {
 if (expirationTime < DateTime.UtcNow)
 {
 instance = instanceCreator.Invoke();
 expirationTime = DateTime.UtcNow.Add(timeout);
 }
 return instance;
 }
 };
 });

var container = new Container();

// We can reuse the created lifestyle for multiple registrations.
container.Register<IService, MyService>(tenMinuteLifestyle);
container.Register<AnotherService, MeTwoService>(tenMinuteLifestyle);

In this example the Lifestyle.CreateCustom method is called and supplied with a delegate that returns a delegate that applies the 10 minute cache. This example makes use of the fact that each registration gets its own delegate by using four closures (timeout, syncRoot, expirationTime and instance). Since each registration (in the example IService and AnotherService) will get its own Func<object> delegate, each registration gets its own set of closures. The closures are therefore static per registration.

One of the closure variables is the instance and this will contain the cached instance that will change after 10 minutes has passed. As long as the time hasn’t passed, the same instance will be returned.

Since the constructed Func<object> delegate can be called from multiple threads, the code needs to do its own synchronization. Both the DateTime comparison and the DateTime assignment are not thread-safe and this code needs to handle this itself.

Do note that even though locking is used to synchronize access, this custom lifestyle might not work as expected, because when the expiration time passes while an object graph is being resolved, it might result in an object graph that contains two instances of the registered component, which might not be what you want. This example therefore is only for demonstration purposes.

In case you wish to develop a custom lifestyle, we strongly advice posting a question on the Forum. We will be able to guide you through this process.

Footnotes

	#1

	https://mng.bz/K1qZ

	#2

	https://martinfowler.com/eaaCatalog/unitOfWork.html

	#3

	https://nuget.org/packages/SimpleInjector.Integration.Web

	#4

	https://nuget.org/packages/SimpleInjector.MVC3

	#5

	https://blogs.msdn.com/b/pfxteam/archive/2012/06/15/executioncontext-vs-synchronizationcontext.aspx

	#6

	https://vegetarianprogrammer.blogspot.de/2012/12/understanding-synchronizationcontext-in.html

	#7

	https://nuget.org/packages/SimpleInjector.Integration.Wcf

	#8

	https://msdn.microsoft.com/en-us/library/system.servicemodel.instancecontextmode.aspx

	#9

	https://stackoverflow.com/questions/17702546

	#10

	https://simpleinjector.org/ReferenceLibrary/?topic=html/T_SimpleInjector_Lifestyle.htm

	#11

	https://simpleinjector.org/ReferenceLibrary/?topic=html/T_SimpleInjector_Registration.htm

	#12

	https://simpleinjector.org/ReferenceLibrary/?topic=html/M_SimpleInjector_Lifestyle_CreateCustom.htm

	#13

	https://simpleinjector.org/ReferenceLibrary/?topic=html/T_SimpleInjector_CreateLifestyleApplier.htm

Integration Guide

Simple Injector can be used in a wide range of .NET technologies, both server side as client side. Jump directly to the integration page for the application framework of your choice. When the framework of your choice is not listed, doesn’t mean it isn’t supported, but just that we didn’t have the time write it :-)

	Console Applications

	ASP.NET Core MVC

	 .NET Generic Host

	 ServiceCollection Console Applications

	ASP.NET MVC

	ASP.NET Web API

	ASP.NET Web Forms

	OWIN

	Windows Forms

	WCF

	WPF

Other Technologies

Besides integration with standard .NET technologies, Simple Injector can be integrated with a wide range of other technologies. Here are a few links to help you get started quickly:

	ASP.NET Identity Framework#1

	Azure Functions#2

	Azure WebJobs SDK#3

	Castle DynamicProxy Interception#4

	Drum#5

	Fluent Validations#6

	FluentScheduler#7

	gRPC-dotnet#8

	HttpClientFactory#9

	Membus#10

	Nancy#11

	PetaPoco#12

	Quartz.NET#13

	RavenDB#14

	SignalR#15

	SignalR Core#16

	Web Forms MVP#17

Patterns

	Auto-Mocking container#18

	Multi-tenant applications#19

	Unit of Work pattern#20

Footnotes

	#1

	https://github.com/simpleinjector/SimpleInjector/issues/597

	#2

	https://github.com/simpleinjector/SimpleInjector/issues/536

	#3

	https://github.com/simpleinjector/SimpleInjector/issues/712#issuecomment-493213757

	#4

	https://stackoverflow.com/questions/24513530/using-simple-injector-with-castle-proxy-interceptor

	#5

	https://stackoverflow.com/questions/26661621/how-to-register-drum-urimaker-using-simple-injector

	#6

	https://stackoverflow.com/questions/9984144/what-is-the-correct-way-to-register-fluentvalidation-with-simpleinjector

	#7

	https://stackoverflow.com/a/53956064/264697

	#8

	https://github.com/simpleinjector/SimpleInjector/issues/785

	#9

	https://github.com/simpleinjector/SimpleInjector/issues/654

	#10

	https://stackoverflow.com/questions/16123641/membus-and-ioc-simpleinjector-wiring-command-handlers-automatically-by-interfa

	#11

	https://github.com/NancyFx/Nancy/issues/1227#issuecomment-163279040

	#12

	https://github.com/simpleinjector/SimpleInjector/issues/598

	#13

	https://stackoverflow.com/questions/14562176/constructor-injection-with-quartz-net-and-simple-injector

	#14

	https://stackoverflow.com/questions/10940988/how-to-configure-simple-injector-ioc-to-use-ravendb

	#15

	https://stackoverflow.com/questions/10555791/using-simpleinjector-with-signalr

	#16

	https://github.com/simpleinjector/SimpleInjector/issues/631

	#17

	https://stackoverflow.com/questions/15123515/pass-runtime-value-to-constructor-using-simpleinjector

	#18

	https://github.com/simpleinjector/SimpleInjector/issues/290#issuecomment-243244930

	#19

	https://github.com/simpleinjector/SimpleInjector/issues/599

	#20

	https://stackoverflow.com/questions/10585478

Console Application Integration Guide

Simple Injector contains several integration packages that simplify plugging-in Simple Injector into a wide variety of frameworks. These packages allow you to hook Simple Injector onto the framework’s integration points.

When it comes to writing Console applications, however, there are no integration packages. That’s because Console applications are not backed by a particular framework. .NET just does the bare minimum when a Console application is started and there are no integration hooks that you can use. This means that you are in complete control over the application.

When a Console application is short-lived, and runs just a single operation and exits, the application could have a structure similar to the following:

using SimpleInjector;

static class Program
{
 private static readonly Container container;

 static Program()
 {
 container = new Container();

 container.Register<IUserRepository, SqlUserRepository>();
 container.Register<MyRootType>();

 container.Verify();
 }

 static void Main()
 {
 var service = container.GetInstance<MyRootType>();
 service.DoSomething();
 }
}

Console applications can also be built to be long running, just like Windows services and web services are. In that case such Console application will typically handle many ‘requests’.

The term ‘request’ is used loosely here. It could be an incoming request over the network, an action triggered by a message on an incoming queue, or an action triggered by timer or scheduler. Either way, a request is something that should typically run in a certain amount of isolation. It might, for instance, have its own set of state, specific to that request. An Entity Framework DbContext for instance, is typically an object that is particular to a single request.

In the absence of any framework code, you are yourself responsible to tell Simple Injector that certain code must run in isolation. This can be done with scoping. There are two types of scoped lifestyles that can be used. ThreadScopedLifestyle allows wrapping code that runs on a single thread in a scope, where AsyncScopedLifestyle allows wrapping a block of code that flows asynchronously (using async await).

The following example demonstrates a simple Console application that runs indefinitely, and executes a request every second. The request is wrapped in a scope:

using SimpleInjector;
using SimpleInjector.Lifestyles;

static class Program
{
 private static readonly Container container;

 static Program()
 {
 container = new Container();
 container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

 container.Register<IUserRepository, SqlUserRepository>(Lifestyle.Scoped);
 container.Register<MyRootType>();

 container.Verify();
 }

 static void Main()
 {
 while (true)
 {
 using (AsyncScopedLifestyle.BeginScope(container))
 {
 var service = container.GetInstance<MyRootType>();

 service.DoSomething();
 }

 Thread.Sleep(TimeSpan.FromSeconds(1));
 }
 }
}

Footnotes

ASP.NET Core and ASP.NET Core MVC Integration Guide

Simple Injector offers the Simple Injector ASP.NET Core MVC Integration NuGet package#1 for integration with ASP.NET Core MVC.

IMPORTANT: This page is specific to the integration packages for Simple Injector v4.8 and up. In case you are using an older version of Simple Injector, please see the old integration page. However, in the context of integration with ASP.NET Core, you are advised to upgrade to v4.8. Those versions fixed numerous bugs concerning integration with ASP.NET Core.

The following code snippet shows how to use the integration package to apply Simple Injector to your web application’s Startup class.

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using SimpleInjector;

public class Startup
{
 private Container container = new SimpleInjector.Container();

 public Startup(IConfiguration configuration)
 {
 // Set to false. This will be the default in v5.x and going forward.
 container.Options.ResolveUnregisteredConcreteTypes = false;

 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services)
 {
 // ASP.NET default stuff here
 services.AddControllersWithViews();

 services.AddLogging();
 services.AddLocalization(options => options.ResourcesPath = "Resources");

 // Sets up the basic configuration that for integrating Simple Injector with
 // ASP.NET Core by setting the DefaultScopedLifestyle, and setting up auto
 // cross wiring.
 services.AddSimpleInjector(container, options =>
 {
 // AddAspNetCore() wraps web requests in a Simple Injector scope and
 // allows request-scoped framework services to be resolved.
 options.AddAspNetCore()

 // Ensure activation of a specific framework type to be created by
 // Simple Injector instead of the built-in configuration system.
 // All calls are optional. You can enable what you need. For instance,
 // PageModels and TagHelpers are not needed when you build a Web API.
 .AddControllerActivation()
 .AddViewComponentActivation()
 .AddPageModelActivation()
 .AddTagHelperActivation();

 // Optionally, allow application components to depend on the non-generic
 // ILogger (Microsoft.Extensions.Logging) or IStringLocalizer
 // (Microsoft.Extensions.Localization) abstractions.
 options.AddLogging();
 options.AddLocalization();
 });

 InitializeContainer();
 }

 private void InitializeContainer()
 {
 // Add application services. For instance:
 container.Register<IUserService, UserService>(Lifestyle.Singleton);
 }

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 // UseSimpleInjector() finalizes the integration process.
 app.UseSimpleInjector(container);

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 // Default ASP.NET middleware
 app.UseStaticFiles();
 app.UseRouting();
 app.UseAuthorization();

 // Add your custom Simple Injector-created middleware to the pipeline.
 app.UseMiddleware<CustomMiddleware1>(container);
 app.UseMiddleware<CustomMiddleware2>(container);

 // ASP.NET MVC default stuff here
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
 });

 // Always verify the container
 container.Verify();
 }
}

NOTE: Please note that when integrating Simple Injector in ASP.NET Core, you do not replace ASP.NET’s built-in container, as advised by the Microsoft documentation#2. The practice with Simple Injector is to use Simple Injector to build up object graphs of your application components and let the built-in container build framework and third-party components, as shown in the previous code snippet. To understand the rationale around this, please read this article#3.

TIP: By using AddSimpleInjector, you allow the Simple Injector Container to be automatically disposed when the application shuts down. To override this behavior, please see this.

Available integration packages

In case you need more fine-grained control over the number of Microsoft packages that get included in your application, you can decide to use one of the other available ASP.NET Core integration packages. The following table lists the relevant integration packages sorted from most complete to most basic integration:

	Integration Package

	Description

	SimpleInjector.Integration.AspNetCore.Mvc#4

	Adds Tag Helper and Page Model integration for ASP.NET Core MVC.
The features of this package are described on his page.

This package contains the following dependencies:

	SimpleInjector.Integration.AspNetCore.Mvc.Core

	Microsoft.AspNetCore.Mvc.Razor

	Microsoft.AspNetCore.Mvc.RazorPages

	SimpleInjector.Integration.AspNetCore.Mvc.Core#5

	Adds Controller and View Component integration for ASP.NET Core MVC.
The features of this package are described on his page.

This package contains the following dependencies:

	SimpleInjector.Integration .AspNetCore

	Microsoft.AspNetCore.Mvc.Core

	Microsoft.AspNetCore.Mvc.ViewFeatures

	SimpleInjector.Integration.AspNetCore#6

	Adds request scoping and middleware integration ASP.NET Core.
The features of this package are described on his page.

This package contains the following dependencies:

	SimpleInjector.Integration.ServiceCollection

	Microsoft.AspNetCore.Abstractions

	Microsoft.AspNetCore.Http

	Microsoft.AspNetCore.Http.Abstractions

	Microsoft.Extensions.Hosting.Abstractions

	SimpleInjector.Integration.GenericHost#7

	Adds .NET Core 2.1 Hosted Service integration and integration on top of
IHost.
The features of this package are discussed in the
.NET Generic Host Integration Guide.

This package contains the following dependencies:

	SimpleInjector.Integration .ServiceCollection

	Microsoft.Extensions .DependencyInjection.Abstractions

	Microsoft.Extensions.Hosting .Abstractions

	SimpleInjector.Integration.ServiceCollection#8

	Adds integration with .NET Core’s configuration system (i.e.
IServiceCollection) by allowing framework-configured services to be
injected into Simple Injector-managed components. Furthermore, simplifies
integration with .NET Core’s logging infrastructure.
The features of this package are discussed in the
ServiceCollection Integration Guide.

This package contains the following dependencies:

	SimpleInjector (core library)

	Microsoft.Extensions .DependencyInjection.Abstractions

	Microsoft.Extensions.Hosting.Abstractions

	Microsoft.Extensions.Localization.Abstractions

	Microsoft.Extensions.Logging.Abstractions

Wiring custom middleware

The previous Startup snippet already showed how a custom middleware class can be used in the ASP.NET Core pipeline. The Simple Injector ASP.NET Core integration packages add an UseMiddleware extension method that allows adding custom middleware. The following listing shows how a CustomMiddleware class is added to the pipeline.

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 app.UseSimpleInjector(container);

 app.UseMiddleware<CustomMiddleware>(container);

 ...
}

IMPORTANT: The API changed in v4.8 of the Simple Injector ASP.NET Core integration packages. Previously, UseMiddleware was called inside the UseSimpleInjector method. Doing so, caused middleware to be applied at the wrong stage in the pipeline. This could, for instance, cause your middleware to be executed before the static files middleware (i.e. the .UseStaticFiles() call) or before authorization is applied (i.e. the .UseAuthorization() call). Instead, take care that you call .UseMiddleware<TMiddleware>(Container) at the right stage. This typically means after .UseStaticFiles() and .UseAuthorization(), but before .UseEndpoints(…), as shown in the next listing.

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 // UseSimpleInjector() enables framework services to be injected into
 // application components, resolved by Simple Injector.
 app.UseSimpleInjector(container);

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 // In ASP.NET Core, middleware is applied in the order of registration.
 // (opposite to how decorators are applied in Simple Injector). This means
 // that the following two custom middleware components are wrapped inside
 // the authorization middleware, which is typically what you'd want.
 app.UseMiddleware<CustomMiddleware1>(container);
 app.UseMiddleware<CustomMiddleware2>(container);

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
 });

 // Always verify the container
 container.Verify();
}

The type supplied to UseMiddleware<T> should implement the IMiddleware interface from the Microsoft.AspNetCore.Http namespace. A compile error will be given in case the middleware does not implement that interface.

This UseMiddleware overload ensures two particular things:

	Adds a middleware type to the application’s request pipeline. The middleware will be resolved from the supplied the Simple Injector container.

	The middleware type will be added to the container for verification. This means that you should call container.Verify() after the calls to UseMiddleware to ensure that your middleware components are verified.

The following code snippet shows how such CustomMiddleware class might look like:

// Example of some custom user-defined middleware component.
public sealed class CustomMiddleware : Microsoft.AspNetCore.Http.IMiddleware
{
 private readonly IUserService userService;

 public CustomMiddleware(IUserService userService)
 {
 this.userService = userService;
 }

 public async Task InvokeAsync(HttpContext context, RequestDelegate next)
 {
 // Do something before
 await next(context);
 // Do something after
 }
}

Notice how the CustomMiddleware class contains dependencies. When the middleware is added to the pipeline using the previously shown UseMiddleware overload, it will be resolved from Simple Injector on each request, and its dependencies will be injected.

Cross wiring ASP.NET and third-party services

This topic has been moved. Please go here.

Working with IOptions<T>

This topic has been moved. Please go here.

Using Hosted Services

Simple Injector simplifies integration of Hosted Services into ASP.NET Core. For this, you need to include the SimpleInjector.Integration.GenericHost#9 NuGet package. For more information on how to integrate Hosted Services into your ASP.NET Core web application, please read the Using Hosted Services section of the .NET Generic Host Integration Guide.

Using [FromServices] in ASP.NET Core MVC Controllers

Besides injecting dependencies into a controller’s constructor, ASP.NET Core MVC allows injecting dependencies directly into action methods#10 using method injection. This is done by marking a corresponding action method argument with the [FromServices] attribute.

While the use of [FromServices] works for services registered in ASP.NET Core’s built-in configuration system (i.e. IServiceCollection), the Simple Injector integration package, however, does not integrate with [FromServices] out of the box. This is by design and adheres to our design guidelines, as explained below.

IMPORTANT: Simple Injector’s ASP.NET Core integration packages do not allow any Simple Injector registered dependencies to be injected into ASP.NET Core MVC controller action methods using the [FromServices] attribute.

The use of method injection, as the [FromServices] attribute allows, has a few considerate downsides that should be prevented.

Compared to constructor injection, the use of method injection in action methods hides the relationship between the controller and its dependencies from the container. This allows a controller to be created by Simple Injector (or ASP.NET Core’s built-in container for that matter), while the invocation of an individual action might fail, because of the absence of a dependency or a misconfiguration in the dependency’s object graph. This can cause configuration errors to stay undetected longer than strictly required. Especially when using Simple Injector, it blinds its diagnostic abilities which allow you to verify the correctness at application start-up or as part of a unit test.

You might be tempted to apply method injection to prevent the controller’s constructor from becoming too large. But big constructors are actually an indication that the controller itself is too big. It is a common code smell named Constructor over-injection#11. This is typically an indication that the class violates the Single Responsibility Principle#12 meaning that the class is too complex and will be hard to maintain.

A typical solution to this problem is to split up the class into multiple smaller classes. At first this might seem problematic for controller classes, because they can act as gateway to the business layer and the API signature follows the naming of controllers and their actions. Do note, however, that this one-to-one mapping between controller names and the route of your application is not a requirement. ASP.NET Core has a very flexible routing system#13 that allows you to completely change how routes map to controller names and even action names. This allows you to split controllers into very small chunks with a very limited number of constructor dependencies and without the need to fall back to method injection using [FromServices].

Simple Injector promotes best practices, and because of downsides described above, we consider the use of the [FromServices] attribute not to be a best practice. This is why we choose not to provide out-of-the-box support for injecting Simple Injector registered dependencies into controller actions.

In case you still feel method injection is the best option for you, you can plug in a custom IModelBinderProvider implementation returning a custom IModelBinder that resolves instances from Simple Injector.

Resolving services from MVC’s ValidationContext

ASP.NET Core MVC allows you to implement custom validation logic inside model classes using the IValidatableObject interface. Although there is nothing inherently wrong with placing validation logic inside the model object itself, problems start to appear when that validation logic requires services to work. By default this will not work with Simple Injector, as the ValidationContext.GetService method forwards the call to the built-in configuration system—not to Simple Injector.

In general, you should prevent calling GetService or similar methods from within application code, such as MVC model classes. This leads to the Service Locator anti-pattern#14.

Instead, follow the advice given in this Stack Overflow answer#15.

Using Razor Pages

ASP.NET Core 2.0 introduced an MVVM-like model, called Razor Pages#16. A Razor Page combines both data and behavior in a single class.

Integration for Razor Pages is part of the SimpleInjector.Integration.AspNetCore.Mvc integration package. This integration comes in the form of the AddPageModelActivation extension method. This extension method should be used in the ConfigureServices method of your Startup class:

// This method gets called by the runtime.
public void ConfigureServices(IServiceCollection services)
{
 ...

 services.AddSimpleInjector(container, options =>
 {
 options.AddAspNetCore()
 .AddPageModelActivation();
 });
}

This is all that is required to integrate Simple Injector with ASP.NET Core Razor Pages.

Working with ASP.NET Core Identity

The default Visual Studio template comes with built-in authentication through the use of ASP.NET Core Identity. The default template requires a fair amount of cross-wired dependencies. When auto cross wiring is enabled (when calling AddSimpleInjector) integration with ASP.NET Core Identity couldn’t be more straightforward. When you followed the cross wire guidelines, this is all you’ll have to do to get Identity running.

NOTE: It is highly advisable to refactor the AccountController to not to depend on IOptions<IdentityCookieOptions> and ILoggerFactory. See the topic about IOptions<T> for more information.

Footnotes

	#1

	https://www.nuget.org/packages/SimpleInjector.Integration.AspNetCore.Mvc

	#2

	https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection#replacing-the-default-services-container

	#3

	https://simpleinjector.org/blog/2016/06/whats-wrong-with-the-asp-net-core-di-abstraction/

	#4

	https://www.nuget.org/packages/SimpleInjector.Integration.AspNetCore.Mvc

	#5

	https://www.nuget.org/packages/SimpleInjector.Integration.AspNetCore.Mvc.Core

	#6

	https://www.nuget.org/packages/SimpleInjector.Integration.AspNetCore

	#7

	https://www.nuget.org/packages/SimpleInjector.Integration.GenericHost

	#8

	https://www.nuget.org/packages/SimpleInjector.Integration.ServiceCollection

	#9

	https://www.nuget.org/packages/SimpleInjector.Integration.GenericHost

	#10

	https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/dependency-injection?view=aspnetcore-2.1#action-injection-with-fromservices

	#11

	https://blog.ploeh.dk/2018/08/27/on-constructor-over-injection/

	#12

	https://en.wikipedia.org/wiki/Single_responsibility_principle

	#13

	https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing

	#14

	https://mng.bz/WaQw

	#15

	https://stackoverflow.com/a/55846598/264697

	#16

	https://docs.microsoft.com/en-us/aspnet/core/razor-pages/

.NET Generic Host Integration Guide

Simple Injector offers the Simple Injector Generic Host Integration NuGet package#1 for integration with .NET Core 2.1 Generic Host applications.

The following code snippet shows how to use the integration package to apply Simple Injector to your Console application’s Main method:

public static async Task Main()
{
 var container = new Container();

 IHost host = new HostBuilder()
 .ConfigureHostConfiguration(configHost => { ... })
 .ConfigureAppConfiguration((hostContext, configApp) => { ... })
 .ConfigureServices((hostContext, services) =>
 {
 services.AddLogging();
 services.AddLocalization(options => options.ResourcesPath = "Resources");

 services.AddSimpleInjector(container, options =>
 {
 // Hooks hosted services into the Generic Host pipeline
 // while resolving them through Simple Injector
 options.AddHostedService<MyHostedService>();

 // Allows injection of ILogger & IStringLocalizer dependencies into
 // application components.
 options.AddLogging();
 options.AddLocalization();
 });
 })
 .ConfigureLogging((hostContext, configLogging) => { ... })
 .UseConsoleLifetime()
 .Build()
 .UseSimpleInjector(container);

 // Register application components.
 container.Register<MainService>();

 container.Verify();

 await host.RunAsync();
}

The integration consists of two methods, namely AddSimpleInjector and UseSimpleInjector, that need to be called at certain stages in the startup phase:

	AddSimpleInjector is an extension on IServiceCollection and allows the cross wiring of several framework services, such as hosted services, logging, and localization. This cross-wiring process is described in more details here.

	UseSimpleInjector is an extension on IHost and finalizes the integration process. It is a mandatory last step that tells Simple Injector which IServiceProvider it can use to load cross-wired framework services from. This allows Simple Injector to resolve framework components from the underlying IServiceProvider.

The AddSimpleInjector method can be enriched by supplying a delegate that enables extra integration features. For instance:

	The AddHostedService<T> method allows hooking Hosted Services to the Generic Host pipeline, as discussed below.

	The AddLogging method allows application components to be injected with Microsoft.Extensions.Logging.ILogger. For more information, see the Microsoft Logging integration section.

	The AddLocalization method allows application components to be injected with Microsoft.Extensions.Localization.IStringLocalizer. For more information, see the Microsoft Logging integration section.

Using Hosted Services

A Hosted Service is a background task running in an ASP.NET Core service or Console application. A Hosted Service implements the IHostedService interface and can run at certain intervals. When added to the Generic Host or ASP.NET Core pipeline, a Hosted Service instance will be referenced indefinitely by the host. This means that your Hosted Service implementation is effectively a Singleton and, therefore, will be configured as such by Simple Injector when you call Simple Injector’s AddHostedService<THostedService> method:

services.AddSimpleInjector(container, options =>
{
 options.AddHostedService<TimedHostedService>();
});

In case your Hosted Service needs to run repeatedly at certain intervals, it becomes important to start the service’s operation in a Scope. This allows instances with Transient and Scoped lifestyles to be resolved.

In case you require multiple Hosted Services that need to run at specific intervals, at can be beneficial to create a wrapper implementation that takes care of the most important plumbing. The TimedHostedService<TService> below defines such reusable wrapper:

using System;
using System.Threading;
using System.Threading.Tasks;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using SimpleInjector;
using SimpleInjector.Lifestyles;

public class TimedHostedService<TService> : IHostedService, IDisposable
 where TService : class
{
 private readonly Container container;
 private readonly Settings settings;
 private readonly ILogger logger;
 private readonly Timer timer;

 public TimedHostedService(Container container, Settings settings, ILogger logger)
 {
 this.container = container;
 this.settings = settings;
 this.logger = logger;
 this.timer = new Timer(callback: _ => this.DoWork());
 }

 public Task StartAsync(CancellationToken cancellationToken)
 {
 // Verify that TService can be resolved
 this.container.GetRegistration(typeof(TService), true);
 // Start the timer
 this.timer.Change(dueTime: TimeSpan.Zero, period: this.settings.Interval);
 return Task.CompletedTask;
 }

 private void DoWork()
 {
 try
 {
 using (AsyncScopedLifestyle.BeginScope(this.container))
 {
 var service = this.container.GetInstance<TService>();
 this.settings.Action(service);
 }
 }
 catch (Exception ex)
 {
 this.logger.LogError(ex, ex.Message);
 }
 }

 public Task StopAsync(CancellationToken cancellationToken)
 {
 this.timer.Change(Timeout.Infinite, 0);
 return Task.CompletedTask;
 }

 public void Dispose() => this.timer.Dispose();

 public class Settings
 {
 public readonly TimeSpan Interval;
 public readonly Action<TService> Action;

 public Settings(TimeSpan interval, Action<TService> action)
 {
 this.Interval = interval;
 this.Action = action;
 }
 }
}

This reusable TimedHostedService<TService> allows a given service to be resolved and executed within a new AsyncScopedLifestyle, while ensuring that any errors are logged.

The following code snippet shows how this TimedHostedService<TService> can be configured for an IProcessor service:

services.AddSimpleInjector(container, options =>
{
 // Registers the hosted service as singleton in Simple Injector
 // and hooks it onto the .NET Core Generic Host pipeline.
 options.AddHostedService<TimedHostedService<IProcessor>>();
});

// Registers the hosted service's settings object to define a specific schedule.
container.RegisterInstance(new TimedHostedService<IProcessor>.Settings(
 interval: TimeSpan.FromSeconds(10),
 action: processor => processor.DoSomeWork()));

container.Register<IProcessor, ProcessorImpl>();

The previous snippet uses Simple Injector’s AddHostedService<T> method to register the TimedHostedService<IProcessor> in Simple Injector and adds it to the Generic Host pipeline. This class requires a TimedHostedService<TService>.Settings object in its constructor, which is configured using the second registration. The settings specifies the interval and the action to execute—in this case the action on IProcessor.

Footnotes

	#1

	https://www.nuget.org/packages/SimpleInjector.Integration.GenericHost

ServiceCollection Integration Guide

With the introduction of .NET Core, Microsoft introduced its own container-based configuration system, which the specific aim of simplifying integration of framework and third-party components. When building a Console application, however, for the most part, this configuration system can be safely ignored, as explained in the Console Application Integration Guide.

In some cases, however, framework and third-party components are tightly coupled to this new configuration system. Entity Framework’s DbContext pooling feature is an example where this tight coupling was introduced—pooling can practically only be used by configuring it in Microsoft’s IServiceCollection. As application developer, however, you wish to use Simple Injector to compose your application components. But those application components need to be fed with those framework and third-party services from time to time, which means framework components need to be pulled in from the .NET configuration system.

NOTE: Please note that when integrating Simple Injector, you do not replace .NET’s built-in container, as advised by the Microsoft documentation#1. The practice with Simple Injector is to use Simple Injector to build up object graphs of your application components and let the built-in container build framework and third-party components. To understand the rationale around this, please read this article#2.

To combat this unfortunate tight coupling of framework and third-party components, Simple Injector introduces the Simple Injector ServiceCollection integration package#3. It allows you to register your application components in Simple Injector, while keeping the necessary framework and third-party components configured in Microsoft’s ServiceCollection, while allowing Simple Injector to inject those framework components into your application components by requesting them from the built-in configuration system on your behalf.

NOTE: The SimpleInjector.Integration.ServiceCollection package defines the core behavior that the .NET Generic Host Integration Guide and ASP.NET Core MVC Integration Guide build upon. If you’re building a Generic Host or ASP.NET Core application, please read the documentation of those topics.

The following code snippet shows how to use the integration package to apply Simple Injector to your Console application. In this example, the application requires working with framework components that can’t easily be configured without IServiceCollection (in this case, a pooled DbContext):

public static void Main()
{
 var container = new Container();

 var services = new ServiceCollection()
 // Add all framework components you wish to inject into application
 // components, for instance:
 .AddDbContextPool<AdventureWorksContext>(options => { /*options */ })

 // Integrate with Simple Injector
 .AddSimpleInjector(container);

 services
 // Save yourself pain and agony and always use "validateScopes: true"
 .BuildServiceProvider(validateScopes: true)

 // Ensures framework components can be retrieved
 .UseSimpleInjector(container);

 // Register application components.
 container.Register<MainService>();

 // Always verify the container
 container.Verify();

 // Run application code
 using (AsyncScopedLifestyle.BeginScope(container))
 {
 var service = container.GetInstance<MainService>();
 service.DoAwesomeStuff();
 }
}

Cross wiring framework and third-party services

When your application code needs a service which is defined by .NET Core or any third-party library, it is sometimes necessary to get such a dependency from .NET Core’s built-in configuration system and inject it into your application components, which are constructed by Simple Injector. This is called cross wiring. Cross wiring is the process where a type is created and managed by the .NET Core configuration system and fed to Simple Injector so it can use the created instance to supply it as a dependency to your application code.

Simple Injector will automatically cross wire framework components from the framework’s IServiceProvider in case both the AddSimpleInjector and UseSimpleInjector extension methods are called:

IServiceProvider provider = services
 .AddSimpleInjector()
 .BuildServiceProvider(validateScopes: true);

// Ensures framework components are cross wired.
provider.UseSimpleInjector(container);

This provides integration with Simple Injector on top of the IServiceProvider abstraction.

In the case where the SimpleInjector.Integration.AspNetCore package is used in an ASP.NET Core application, there is an identical UseSimpleInjector extension method on top of IApplicationBuilder, which can be called as part of the Startup’s Configure method:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 // Ensures framework components are cross wired.
 app.UseSimpleInjector(container);

 ...
}

When auto cross wiring is enabled, it accomplishes the following:

	Anytime Simple Injector needs to resolve a dependency that is not registered, it queries the framework’s IServiceCollection to see whether this dependency exists in the ASP.NET Core configuration system.

	In case the dependency exists in IServiceCollection, Simple Injector ensures that the dependency is resolved from the .NET Core configuration system anytime it is requested—in other words, by requesting it from the IServiceProvider.

	In doing so, Simple Injector preserves the framework dependency’s lifestyle. This allows application components that depend on external services to be diagnosed for Lifestyle Mismatches.

	In case no suitable dependency exists in the IServiceCollection, Simple Injector falls back to its default behavior. This most likely means that an expressive exception is thrown, because the object graph can’t be fully composed.

Simple Injector’s auto cross wiring has the following limitations:

	Collections (e.g. IEnumerable<T>) are not auto cross wired because of unbridgeable differences between how Simple Injector and .NET Core’s configuration system handle collections. If a framework or third-party supplied collection needs to be injected into an application component that is constructed by Simple injector, such collection should be cross wired manually. In that case, you must take explicit care to ensure no Lifestyle Mismatches occur—i.e. you should make the cross-wired registration with the lifestyle equal to the shortest lifestyle of the elements of the collection.

	Cross wiring is a one-way process. .NET’s configuration system will not automatically resolve its missing dependencies from Simple Injector. When an application component, composed by Simple Injector, needs to be injected into a framework or third-party component, this has to be set up manually by adding a ServiceDescriptor to the IServiceCollection that requests the dependency from Simple Injector. This practice, however, should be quite rare.

	Simple Injector will not be able to verify and diagnose object graphs built by the configuration system itself. Those components and their registrations are provided by Microsoft and third-party library makers—you should assume their correctness.

	Simple Injector’s verification can give false positives when cross wiring Transient framework or third-party components. This caused by differences in what ‘Transient’ means. Simple Injector sees a Transient component as something that is short lived. This is why a Transient components can’t be injected into a Scoped or Singleton consumer. .NET Core, on the other hand, views a Transient component as something that is stateless. This is why .NET Core would allow such Transient to be injected into a Scoped and—in case the Transient does not have any Scoped dependencies—even into Singleton consumers. To err on the side of safety, Simple Injector still warns when it injects Transient framework components into your non-Transient application components. To fix this, you can make your consumer Transient, or suppress the warning, as explained in the Lifestyle Mismatches documentation guide.

In case the automatic cross wiring of framework components is not desired, it can be disabled by setting AutoCrossWireFrameworkComponents to false:

services.AddSimpleInjector(options =>
{
 options.AutoCrossWireFrameworkComponents = false;
});

IServiceProvider provider = services.BuildServiceProvider(validateScopes: true);

provider.UseSimpleInjector(container);

IMPORTANT: This section has changed with the introduction of Simple Injector v4.8. There was a AutoCrossWireFrameworkComponents property on UseSimpleInjector, but it is marked as obsolete. You will get a compile error and a runtime error when using it. You should use the AutoCrossWireFrameworkComponents on AddSimpleInjector instead, as shown in the previous listing.

Or more specifically for ASP.NET Core:

public void ConfigureServices(IServiceCollection services)
{
 ...

 services.AddSimpleInjector(container, options =>
 {
 options.AutoCrossWireFrameworkComponents = false;
 });

 ...
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 app.UseSimpleInjector(container);

 ...
}

When auto cross wiring is disabled, individual framework components can still be cross wired, using the CrossWire<T> extension method:

services.AddSimpleInjector(container, options =>
{
 options.AutoCrossWireFrameworkComponents = false;

 // Cross wires ILoggerFactory
 options.CrossWire<ILoggerFactory>();
});

IMPORTANT: Similar as noted above, cross wiring changed in Simple Injector v4.8. With the introduction of v4.8, cross wiring needs to be applied during AddSimpleInjector instead of during UseSimpleInjector. You will get a compile warning when using cross wiring inside UseSimpleInjector.

Like auto cross wiring, CrossWire<TService> does the required plumbing such as making sure the type is registered with the same lifestyle as configured in .NET Core, but with the difference of just cross wiring that single supplied type. The following listing demonstrates its use:

options.CrossWire<ILoggerFactory>();
options.CrossWire<IOptions<IdentityCookieOptions>>();

NOTE: Even though auto cross wiring makes cross wiring very easy, you should still prevent letting application components depend on types provided by application frameworks such as ASP.NET as much as possible. In most cases it not the best solution and in violation of the Dependency Inversion Principle#4. Instead, application components should typically depend on application-provided abstractions. These abstractions can be implemented by proxy and/or adapter implementations that forward the call to the framework component. In that case cross wiring can still be used to allow the framework component to be injected into the adapter, but this isn’t required.

Disposing the Container

The Simple Injector Container class implements IDisposable, which allows any disposable singletons to be disposed off. You can call Container.Dispose when the application shuts down. In the case of an ASP.NET Core application, dispose would typically have to be called from inside an IHostApplicationLifetime event.

Fortunately, the AddSimpleInjector extension method ensures the Simple Injector Container is disposed of when the framework’s root IServiceProvider is disposed of. In an ASP.NET Core application, this typically means on application shutdown. The following code snippet demonstrates this:

var container = new Container();

var services = new ServiceCollection()
 // Ensures the container gets disposed
 .AddSimpleInjector(container);

ServiceProvider provider = services
 .BuildServiceProvider(validateScopes: true);

provider.UseSimpleInjector(container);

provider.Dispose();

This behavior, however, can be configured by setting the SimpleInjectorAddOptions’s DisposeContainerWithServiceProvider property to false:

services.AddSimpleInjector(container, options =>
{
 options.DisposeContainerWithServiceProvider = false;
});

By setting DisposeContainerWithServiceProvider to false prevents the container from being disposed when ServiceProvider is being disposed of. This allows you to control if and when the Container is disposed of.

Integrating with Microsoft Logging

The SimpleInjector.Integration.ServiceCollection package simplifies integration with Microsoft’s Microsoft.Extensions.Logging.ILogger by introducing an AddLogging extension method:

.AddSimpleInjector(container, options =>
{
 options.AddLogging();
});

Calling AddLogging() allows application components to depend on the (non-generic) Microsoft.Extensions.Logging.ILogger abstraction, as shown in the following listing:

public class CancelOrderHandler : IHandler<CancelOrder>
{
 private readonly ILogger logger;

 public CancelOrderHandler(ILogger logger)
 {
 this.logger = logger;
 }

 public void Handle(CancelOrder command)
 {
 this.logger.LogDebug("Handler called");
 }
}

When resolved, Simple Injector ensures that CancelOrderHandler gets injected with a logger specific for its usage. In practice this means the injected logger is a Logger<CancelOrderHandler>.

IMPORTANT: Opposite to Microsoft’s guidance to use ILogger<T>, with Simple Injector you do not let CancelOrderHandler depend on ILogger<CancelOrderHandler>, but simply on ILogger. This makes your code simpler, easier to test, and less error prone. The sole reason the existence of this guidance is because of limitations of the built-in configuration system. As Simple Injector is more advanced, Microsoft’s guidance can safely be ignored.

Integrating with Microsoft Localization

The SimpleInjector.Integration.ServiceCollection package simplifies integration with Microsoft’s Microsoft.Extensions.Localization.IStringLocalizer by introducing an AddLocalization extension method:

.AddSimpleInjector(container, options =>
{
 options.AddLocalization();
});

Calling AddLocalization() allows application components to depend on the (non-generic) Microsoft.Extensions.Localization.IStringLocalizer abstraction, as shown in the following listing:

[Route("api/[controller]")]
public class AboutController : Controller
{
 private readonly IStringLocalizer localizer;

 public AboutController(IStringLocalizer localizer)
 {
 this.localizer = localizer;
 }

 [HttpGet]
 public string Get()
 {
 return this.localizer["About Title"];
 }
}

When resolved, Simple Injector ensures that AboutController gets injected with a IStringLocalizer specific for its usage. In practice this means the injected StringLocalizer is a StringLocalizer<AboutController>.

IMPORTANT: Opposite to Microsoft’s guidance to use IStringLocalizer<T>, with Simple Injector you do not let AboutController depend on IStringLocalizer<AboutController>, but simply on IStringLocalizer. This makes your code simpler, easier to test, and less error prone. The sole reason the existence of this guidance is because of limitations of the built-in configuration system. As Simple Injector is more advanced, Microsoft’s guidance can safely be ignored.

IMPORTANT: AddLocalization provides only integration for the IStringLocalizer with Simple Injector. The Microsoft.AspNetCore.Mvc.Localization.IHtmlLocalizer abstraction is not part of this integration option.

Working with IOptions<T>

.NET Core contains a new configuration model based on an IOptions<T> abstraction. We advise against injecting IOptions<T> dependencies into your application components. Instead let components depend directly on configuration objects and register those objects as instances (using RegisterInstance). This ensures that configuration values are read during application start up and it allows verifying them at that point in time, allowing the application to fail fast.

Letting application components depend on IOptions<T> has some unfortunate downsides. First of all, it causes application code to take an unnecessary dependency on a framework abstraction. This is a violation of the Dependency Inversion Principle, which prescribes the use of application-tailored abstractions. Injecting an IOptions<T> into an application component makes such component more difficult to test, while providing no additional benefits for that component. Application components should instead depend directly on the configuration values they require.

Second, IOptions<T> configuration values are read lazily. Although the configuration file might be read upon application start up, the required configuration object is only created when IOptions<T>.Value is called for the first time. When deserialization fails, because of application misconfiguration for instance, such error will only be appear after the call to IOptions<T>.Value. This can cause misconfigurations to stay undetected for much longer than required. By reading—and verifying—configuration values at application start up, this problem can be prevented. Configuration values can be injected as singletons into the component that requires them.

To make things worse, in case you forget to configure a particular section (by omitting a call to services.Configure<T>) or when you make a typo while retrieving the configuration section (e.g. by supplying the wrong name to Configuration.GetSection(name)), the configuration system will simply supply the application with a default and empty object instead of throwing an exception! This may make sense when building framework or third-party components, but not so much for application development, as it easily leads to fragile applications.

Because you want to verify the configuration at start-up, it makes no sense to delay reading it, and that makes injecting IOptions<T> into your application components plain wrong. Depending on IOptions<T> might still be useful when bootstrapping the application, but not as a dependency anywhere else in your application. The IOptions<T> architecture is designed for the framework and its components, and makes sense in that particular context—it does not make sense in the context of line-of-business applications.

Once you have a correctly read and verified configuration object, registration of the component that requires the configuration object is as simple as this:

MyMailSettings mailSettings =
 config.GetSection("Root:SectionName").Get<MyMailSettings>();

// Verify mailSettings here (if required)

// Supply mailSettings as constructor argument to a type that requires it,
container.Register<IMessageSender>(() => new MailMessageSender(mailSettings));

// or register MailSettings as singleton in the container.
container.RegisterInstance<MyMailSettings>(mailSettings);
container.Register<IMessageSender, MailMessageSender>();

Footnotes

	#1

	https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection#replacing-the-default-services-container

	#2

	https://simpleinjector.org/blog/2016/06/whats-wrong-with-the-asp-net-core-di-abstraction/

	#3

	https://www.nuget.org/packages/SimpleInjector.Integration.ServiceCollection

	#4

	https://en.wikipedia.org/wiki/Dependency_inversion_principle

ASP.NET MVC Integration Guide

Simple Injector contains Simple Injector MVC Integration Quick Start NuGet package#1.

Warning: If you are starting from an Empty MVC project template (File | New | Project | MVC 4 | Empty Project Template) you have to manually setup System.Web.Mvc binding redirects, or reference System.Web.Mvc from the GAC.

The following code snippet shows how to use the integration package (note that the quick start package injects this code into your Visual Studio MVC project).

// You'll need to include the following namespaces
using System.Web.Mvc;
using SimpleInjector;
using SimpleInjector.Integration.Web;
using SimpleInjector.Integration.Web.Mvc;

// This is the Application_Start event from the Global.asax file.
protected void Application_Start(object sender, EventArgs e)
{
 // Create the container as usual.
 var container = new Container();
 container.Options.DefaultScopedLifestyle = new WebRequestLifestyle();

 // Register your types, for instance:
 container.Register<IUserRepository, SqlUserRepository>(Lifestyle.Scoped);

 // This is an extension method from the integration package.
 container.RegisterMvcControllers(Assembly.GetExecutingAssembly());

 container.Verify();

 DependencyResolver.SetResolver(new SimpleInjectorDependencyResolver(container));
}

Footnotes

	#1

	https://nuget.org/packages/SimpleInjector.MVC3

ASP.NET Web API Integration Guide

Simple Injector contains Simple Injector ASP.NET Web API Integration Quick Start NuGet package for IIS-hosted applications#1. If you’re not using NuGet, you must include the SimpleInjector.Integration.WebApi.dll in your Web API application, which is part of the standard download on Github.

Note: To be able to run the Web API integration packages, you need#2 .NET 4.5 or above.

Basic setup

The following code snippet shows how to use the integration package (note that the quick start package injects this code for you).

// You'll need to include the following namespaces
using System.Web.Http;
using SimpleInjector;
using SimpleInjector.Lifestyles;
using SimpleInjector.Integration.WebApi;

// This is the Application_Start event from the Global.asax file.
protected void Application_Start()
{
 // Create the container as usual.
 var container = new Container();
 container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

 // Register your types, for instance using the scoped lifestyle:
 container.Register<IUserRepository, SqlUserRepository>(Lifestyle.Scoped);

 // This is an extension method from the integration package.
 container.RegisterWebApiControllers(GlobalConfiguration.Configuration);

 container.Verify();

 GlobalConfiguration.Configuration.DependencyResolver =
 new SimpleInjectorWebApiDependencyResolver(container);

 // Here your usual Web API configuration stuff.
}

With this configuration, ASP.NET Web API will create new IHttpController instances through the container. Because controllers are concrete classes, the container will be able to create them without any registration. However, to be able to verify and diagnose the container’s configuration, it is important to register all root types explicitly, which is done by calling RegisterWebApiControllers.

Note: For Web API applications the use of the AsyncScopedLifestyle is advised over the WebRequestLifestyle. Please take a look at the Web API Request Object Lifestyle Management wiki page for more information.

Given the configuration above, an actual controller could look like this:

public class UserController : ApiController
{
 private readonly IUserRepository repository;

 // Use constructor injection here
 public UserController(IUserRepository repository)
 {
 this.repository = repository;
 }

 public IEnumerable<User> GetAllUsers() => this.repository.GetAll();

 public User GetUserById(int id
 {
 try
 {
 return this.repository.GetById(id);
 }
 catch (KeyNotFoundException)
 {
 throw new HttpResponseException(HttpStatusCode.NotFound);
 }
 }
}

Extra features

The basic features of the Web API integration package are the SimpleInjectorWebApiDependencyResolver class and the RegisterWebApiControllers extension method. Besides these basic features, the integration package contains extra features that can make your life easier.

Getting the current request’s HttpRequestMessage

When working with Web API you will often find yourself wanting access to the current HttpRequestMessage. Simple Injector allows fetching the current HttpRequestMessage by calling the container.GetCurrentHttpRequestMessage() extension method. To be able to request the current HttpRequestMessage you need to explicitly enable this as follows:

container.EnableHttpRequestMessageTracking(GlobalConfiguration.Configuration);

There are several ways to get the current HttpRequestMessage in your services, but since it is discouraged to inject the Container itself into any services, the best way is to define an abstraction for this. For instance:

public interface IRequestMessageAccessor
{
 HttpRequestMessage CurrentMessage { get; }
}

This abstraction can be injected into your services, which can call the CurrentMessage property to get the HttpRequestMessage. Close to your DI configuration you can now create an implementation for this interface as follows:

private sealed class RequestMessageAccessor : IRequestMessageAccessor
{
 private readonly Container container;

 public RequestMessageAccessor(Container container)
 {
 this.container = container;
 }

 public HttpRequestMessage CurrentMessage =>
 this.container.GetCurrentHttpRequestMessage();
}

This implementation can be implemented as follows:

container.RegisterInstance<IRequestMessageAccessor>(
 new RequestMessageAccessor(container));

Injecting dependencies into Web API filter attributes

Web API caches filter attribute instances indefinitely per action, effectively making them singletons. This makes them unsuited for dependency injection, since the attribute’s dependencies will be accidentally promoted to singleton as well, which can cause all sorts of concurrency issues. This problem is commonly referred to as Captive Dependencies#3 and although Simple Injector tries to ref:find those issues <LifestyleMismatches>, it will be unable to do so in this this case.

Since dependency injection is not an option here, an other mechanism is advised. There are basically two options here. Which one is best depends on the amount of filter attributes your application needs. If the number of attributes is limited (to a few), the simplest solution is to revert to the Service Locator (anti-)pattern within your attributes. If the number of attributes is larger, it might be better to make attributes passive.

Reverting to Service Locator means that you need to do the following:

	Extract all the attribute’s logic -with its dependencies- into a new service class.

	Resolve this service from within the filter attribute’s OnActionExecXXX methods (but prevent storing the resolved service in a private field as that could lead to undetectable Captive Dependencies).

	Call the service’s method.

The following example visualizes this:

public class MinimumAgeActionFilter : FilterAttribute
{
 public readonly int MinimumAge;

 public MinimumAgeActionFilter(int minimumAge)
 {
 this.MinimumAge = minimumAge;
 }

 public override Task OnActionExecutingAsync(
 HttpActionContext actionContext, CancellationToken cancellationToken)
 {
 var checker = GlobalConfiguration.Configuration.DependencyResolver
 .GetService(typeof(IMinimumAgeChecker)) as IMinimumAgeChecker;

 checker.VerifyCurrentUserAge(this.MinimumAge);

 return TaskHelpers.Completed();
 }
}

By moving all the logic and dependencies out of the attribute, the attribute becomes a small infrastructural piece of code; a humble object that simply forwards the call to the real service.

If the number of required filter attributes grows, a different model might be in place. In that case you might want to make your attributes passive#4 as explained here#5.

Injecting dependencies into Web API message handlers

The default mechanism in Web API to use HTTP Message Handlers to ‘decorate’ requests is by adding them to the global MessageHandlers collection as shown here:

GlobalConfiguration.Configuration.MessageHandlers.Add(new MessageHandler1());

The problem with this approach is that this effectively hooks in the MessageHandler1 into the Web API pipeline as a singleton. This is fine when the handler itself has no state and no dependencies, but in a system that is based on the SOLID design principles, it’s very likely that those handlers will have dependencies of their own and its very likely that some of those dependencies need a lifetime that is shorter than singleton.

If that’s the case, such message handler should not be created as singleton, since in general, a component should never have a lifetime that is longer than the lifetime of its dependencies.

The solution is to define a proxy class that sits in between. Since Web API lacks that functionality, we need to build this ourselves as follows:

public sealed class DelegatingHandlerProxy<THandler> : DelegatingHandler
 where THandler : DelegatingHandler
{
 private readonly Container container;

 public DelegatingHandlerProxy(Container container)
 {
 this.container = container;
 }

 protected override async Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request, CancellationToken cancellationToken)
 {

 // Important: Trigger the creation of the scope.
 request.GetDependencyScope();

 var handler = this.container.GetInstance<THandler>();

 if (!object.ReferenceEquals(handler.InnerHandler, this.InnerHandler))
 {
 handler.InnerHandler = this.InnerHandler;
 }

 // Do not dispose handler as this is managed by Simple Injector
 using (var invoker = new HttpMessageInvoker(handler, disposeHandler: false))
 {
 return await invoker.SendAsync(request, cancellationToken);
 }
 }
}

This DelegatingHandlerProxy<THandler> can be added as singleton to the global MessageHandlers collection, and it will resolve the given THandler on each request, allowing it to be resolved according to its lifestyle.

The DelegatingHandlerProxy<THandler> can be used as follows:

container.Register<MessageHandler1>();

GlobalConfiguration.Configuration.MessageHandlers.Add(
 new DelegatingHandlerProxy<MessageHandler1>(container));

Footnotes

	#1

	https://www.nuget.org/packages/SimpleInjector.Integration.WebApi.WebHost.QuickStart

	#2

	https://stackoverflow.com/questions/22392032/are-there-any-technical-reasons-simpleinjector-cannot-support-webapi-on-net-4-0

	#3

	https://blog.ploeh.dk/2014/06/02/captive-dependency/

	#4

	https://blog.ploeh.dk/2014/06/13/passive-attributes/

	#5

	https://blogs.cuttingedge.it/steven/posts/2014/dependency-injection-in-attributes-dont-do-it/

ASP.NET Web Forms Integration Guide

ASP.NET Web Forms was never designed with dependency injection in mind. Although using constructor injection in our Page classes, user controls and HTTP handlers would be preferable, it is unfortunately not possible, because ASP.NET expects those types to have a default constructor.

Instead of doing constructor injection, there are alternatives. The simplest thing to do is to fall back to property injection and initialize the page in the constructor.

using System;
using System.Linq;
using System.Reflection;
using System.Web;
using System.Web.Compilation;
using System.Web.UI;
using Microsoft.Web.Infrastructure.DynamicModuleHelper;

// Use the SimpleInjector.Integration.Web Nuget package
using SimpleInjector;
using SimpleInjector.Advanced;
using SimpleInjector.Diagnostics;
using SimpleInjector.Integration.Web;

// Makes use of the System.ComponentModel.Composition assembly
using System.ComponentModel.Composition;

[assembly: PreApplicationStartMethod(
 typeof(MyWebApplication.PageInitializerModule),
 "Initialize")]

namespace MyWebApplication
{
 public sealed class PageInitializerModule : IHttpModule
 {
 public static void Initialize()
 {
 DynamicModuleUtility.RegisterModule(typeof(PageInitializerModule));
 }

 void IHttpModule.Init(HttpApplication app)
 {
 app.PreRequestHandlerExecute += (sender, e) =>
 {
 var handler = app.Context.CurrentHandler;
 if (handler != null)
 {
 string name = handler.GetType().Assembly.FullName;
 if (!name.StartsWith("System.Web") &&
 !name.StartsWith("Microsoft"))
 {
 Global.InitializeHandler(handler);
 }
 }
 };
 }

 void IHttpModule.Dispose() { }
 }

 public class Global : HttpApplication
 {
 private static Container container;

 public static void InitializeHandler(IHttpHandler handler)
 {
 Type handlerType = handler is Page
 ? handler.GetType().BaseType
 : handler.GetType();
 container.GetRegistration(handlerType, true).Registration
 .InitializeInstance(handler);
 }

 protected void Application_Start(object sender, EventArgs e)
 {
 Bootstrap();
 }

 private static void Bootstrap()
 {
 // 1. Create a new Simple Injector container.
 var container = new Container();

 container.Options.DefaultScopedLifestyle = new WebRequestLifestyle();

 // Register a custom PropertySelectionBehavior to enable property injection.
 container.Options.PropertySelectionBehavior =
 new ImportAttributePropertySelectionBehavior();

 // 2. Configure the container (register)
 container.Register<IUserRepository, SqlUserRepository>();
 container.Register<IUserContext, AspNetUserContext>(Lifestyle.Scoped);

 // Register your Page classes to allow them to be verified and diagnosed.
 RegisterWebPages(container);

 // 3. Store the container for use by Page classes.
 Global.container = container;

 // 3. Verify the container's configuration.
 container.Verify();
 }

 private static void RegisterWebPages(Container container)
 {
 var pageTypes =
 from assembly in BuildManager.GetReferencedAssemblies().Cast<Assembly>()
 where !assembly.IsDynamic
 where !assembly.GlobalAssemblyCache
 from type in assembly.GetExportedTypes()
 where type.IsSubclassOf(typeof(Page))
 where !type.IsAbstract && !type.IsGenericType
 select type;

 foreach (Type type in pageTypes)
 {
 var reg = Lifestyle.Transient.CreateRegistration(type, container);
 reg.SuppressDiagnosticWarning(
 DiagnosticType.DisposableTransientComponent,
 "ASP.NET creates and disposes page classes for us.");
 container.AddRegistration(type, reg);
 }
 }

 class ImportAttributePropertySelectionBehavior : IPropertySelectionBehavior
 {
 public bool SelectProperty(Type implementationType, PropertyInfo property) {
 // Makes use of the System.ComponentModel.Composition assembly
 return typeof(Page).IsAssignableFrom(implementationType) &&
 property.GetCustomAttributes(typeof(ImportAttribute), true).Any();
 }
 }
 }
}

With this code in place, we can now write our page classes as follows:

using System;
using System.ComponentModel.Composition;

public partial class Default : System.Web.UI.Page
{
 [Import] public IUserRepository UserRepository { get; set; }
 [Import] public IUserContext UserContext { get; set; }

 protected void Page_Load(object sender, EventArgs e)
 {
 if (this.UserContext.IsAdministrator)
 {
 this.UserRepository.DoSomeStuff();
 }
 }
}

Footnotes

OWIN Integration Guide

Basic setup

To allow scoped instances to be resolved during an OWIN request, the following registration needs to be added to the IAppBuilder instance:

// You'll need to include the following namespaces
using Owin;
using SimpleInjector;
using SimpleInjector.Lifestyles;

public void Configuration(IAppBuilder app)
{
 app.Use(async (context, next) =>
 {
 using (AsyncScopedLifestyle.BeginScope(container))
 {
 await next();
 }
 });
}

Scoped instances need to be registered with the AsyncScopedLifestyle lifestyle:

var container = new Container();
container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

container.Register<IUnitOfWork, MyUnitOfWork>(Lifestyle.Scoped);

Extra features

Besides this basic integration, other tips and tricks can be applied to integrate Simple Injector with OWIN.

Getting the current request’s IOwinContext

When working with OWIN you will occasionally find yourself wanting access to the current IOwinContext. Retrieving the current IOwinContext is easy as using the following code snippet:

public interface IOwinContextAccessor
{
 IOwinContext CurrentContext { get; }
}

public class CallContextOwinContextAccessor : IOwinContextAccessor
{
 public static AsyncLocal<IOwinContext> OwinContext = new AsyncLocal<IOwinContext>();
 public IOwinContext CurrentContext => OwinContext.Value;
}

The code snippet above defines an IOwinContextAccessor and an implementation. Consumers can depend on the IOwinContextAccessor and can call its CurrentContext property to get the request’s current IOwinContext.

The following code snippet can be used to register this IOwinContextAccessor and its implementation:

app.Use(async (context, next) =>
{
 CallContextOwinContextAccessor.OwinContext.Value = context;
 await next();
});

container.RegisterInstance<IOwinContextAccessor>(new CallContextOwinContextAccessor());

Footnotes

Windows Forms Integration Guide

Doing dependency injection in Windows Forms is easy, since Windows Forms does not lay any constraints on the constructors of your Form classes. You can therefore simply use constructor injection in your form classes and let the container resolve them.

The following code snippet is an example of how to register Simple Injector container in the Program class:

using System;
using System.Windows.Forms;
using SimpleInjector;

static class Program
{
 private static Container container;

 [STAThread]
 static void Main()
 {

 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Bootstrap();
 Application.Run(container.GetInstance<Form1>());
 }

 private static void Bootstrap()
 {
 // Create the container as usual.
 container = new Container();

 // Register your types, for instance:
 container.Register<IUserRepository, SqlUserRepository>(Lifestyle.Singleton);
 container.Register<IUserContext, WinFormsUserContext>();
 container.Register<Form1>();

 // Optionally verify the container.
 container.Verify();
 }
}

With this code in place, we can now write our Form classes as follows:

public partial class Form1 : Form
{
 private readonly IUserRepository userRepository;
 private readonly IUserContext userContext;

 public Form1(IUserRepository userRepository, IUserContext userContext)
 {
 this.userRepository = userRepository;
 this.userContext = userContext;

 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 if (this.userContext.IsAdministrator)
 {
 this.userRepository.ControlSomeStuff();
 }
 }
}

Note: It is not possible to use Constructor Injection in User Controls. User Controls are required to have a default constructor. Instead, pass on dependencies to your User Controls using Property Injection.

Footnotes

WCF Integration Guide

The Simple Injector WCF Integration NuGet Package#1 allows WCF services to be resolved by the container, which enables constructor injection.

NOTE: With the introduction of version 4.1 of this integration package, asynchronous programming through async/await is supported. WCF service methods can now be specified using the async keyword.

Note: To be able to run the WCF integration package, you need .NET 4.5 or above.

After installing this NuGet package, it must be initialized in the start-up path of the application by calling the SimpleInjectorServiceHostFactory.SetContainer method:

protected void Application_Start(object sender, EventArgs e)
{
 // Create the container as usual.
 var container = new Container();
 container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

 // Register WCF services.
 container.RegisterWcfServices(Assembly.GetExecutingAssembly());

 // Register your types, for instance:
 container.Register<IUserRepository, SqlUserRepository>();
 container.Register<IUnitOfWork, EfUnitOfWork>(Lifestyle.Scoped);

 // Register the container to the SimpleInjectorServiceHostFactory.
 SimpleInjectorServiceHostFactory.SetContainer(container);
}

Warning: Components that are registered as Lifestyle.Scoped might outlive a single WCF operation. This behavior depends on how the WCF service class is configured. WCF is in control of the lifetime of the service class and contains three lifetime types as defined by the InstanceContextMode enumeration#2. Components that are registered Lifestyle.Scoped live as long as the WCF service class they are injected into.

TIP: Use InstanceContextMode.PerCall for all WCF services. This prevents any hard to detect problems caused by WCF services outliving a single request.

For each service class, you should supply a factory attribute in the .SVC file of each service class. For instance:

<%@ ServiceHost
 Service="UserService"
 CodeBehind="UserService.svc.cs"
 Factory="SimpleInjector.Integration.Wcf.SimpleInjectorServiceHostFactory,
 SimpleInjector.Integration.Wcf"
%>

Note: Instead of having a WCF service layer consisting of many service classes and methods, consider a design that consists of just a single service class with a single method as explained in this article#3. A design where operations are communicated through messages allows the creation of highly maintainable WCF services. With such a design, this integration package will be redundant.

WAS Hosting and Non-HTTP Activation

When hosting WCF Services in WAS (Windows Activation Service), you are not given an opportunity to build your container in the Application_Start event defined in your Global.asax because WAS doesn’t use the standard ASP.NET pipeline. A workaround for this is to move the container initialization to a static constructor:

public static class Bootstrapper
{
 public static readonly Container Container;

 static Bootstrapper()
 {
 var container = new Container();
 container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

 // Register WCF services.
 container.RegisterWcfServices(Assembly.GetExecutingAssembly());

 // register all your components with the container here:
 // container.Register<IService1, Service1>()
 // container.Register<IDataContext, DataContext>(Lifestyle.Scoped);

 container.Verify();

 Container = container;
 }
}

Your custom ServiceHostFactory can now use the static Bootstrapper.Container field:

public class WcfServiceFactory : SimpleInjectorServiceHostFactory
{
 protected override ServiceHost CreateServiceHost(
 Type serviceType, Uri[] baseAddresses)
 {
 return new SimpleInjectorServiceHost(
 Bootstrapper.Container,
 serviceType,
 baseAddresses);
 }
}

Optionally, you can apply your custom service behaviors and contract behaviors to the service host:

public class WcfServiceFactory : SimpleInjectorServiceHostFactory
{
 protected override ServiceHost CreateServiceHost(
 Type serviceType, Uri[] baseAddresses)
 {
 var host = new SimpleInjectorServiceHost(
 Bootstrapper.Container,
 serviceType,
 baseAddresses);

 // This is all optional
 this.ApplyServiceBehaviors(host);
 this.ApplyContractBehaviors(host);

 return host;
 }

 private void ApplyServiceBehaviors(ServiceHost host)
 {
 foreach (var behavior in this.container.GetAllInstances<IServiceBehavior>()) {
 host.Description.Behaviors.Add(behavior);
 }
 }

 private void ApplyContractBehaviors(SimpleInjectorServiceHost host)
 {
 foreach (var behavior in this.container.GetAllInstances<IContractBehavior>())
 {
 foreach (var contract in host.GetImplementedContracts())
 {
 contract.Behaviors.Add(behavior);
 }
 }
 }
}

For each service class, you should supply a factory attribute in the .SVC file of each service class. Assuming the customly defined factory is defined in the MyComp.MyWcfService.Common namespace of the MyComp.MyWcfService assembly, the markup would be the following:

<%@ ServiceHost
 Service="UserService"
 CodeBehind="UserService.svc.cs"
 Factory="MyComp.MyWcfService.Common.WcfServiceFactory, MyComp.MyWcfService"
%>

Footnotes

	#1

	https://nuget.org/packages/SimpleInjector.Integration.Wcf

	#2

	https://msdn.microsoft.com/en-us/library/system.servicemodel.instancecontextmode.aspx

	#3

	https://blogs.cuttingedge.it/steven/posts/2012/writing-highly-maintainable-wcf-services/

Windows Presentation Foundation Integration Guide

Simple Injector can build up Window classes with their dependencies. Use the following steps as a how-to guide:

Step 1:

Change the App.xaml markup by removing the StartUri property:

<Application x:Class="SimpleInjectorWPF.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <!-- Remove the StartupUri property, start the application from a static Main -->
 <Application.Resources>
 </Application.Resources>
</Application>

Step 2:

Add a Program.cs file to your project to be the new entry point for the application:

using System;
using System.Windows;
using SimpleInjector;

static class Program
{
 [STAThread]
 static void Main()
 {
 var container = Bootstrap();

 // Any additional other configuration, e.g. of your desired MVVM toolkit.

 RunApplication(container);
 }

 private static Container Bootstrap()
 {
 // Create the container as usual.
 var container = new Container();

 // Register your types, for instance:
 container.Register<IQueryProcessor, QueryProcessor>(Lifestyle.Singleton);
 container.Register<IUserContext, WpfUserContext>();

 // Register your windows and view models:
 container.Register<MainWindow>();
 container.Register<MainWindowViewModel>();

 container.Verify();

 return container;
 }

 private static void RunApplication(Container container)
 {
 try
 {
 var app = new App();
 app.InitializeComponent();
 var mainWindow = container.GetInstance<MainWindow>();
 app.Run(mainWindow);
 }
 catch (Exception ex)
 {
 //Log the exception and exit
 }
 }
}

Step 3:

Change the ‘Startup object’ in the properties of your project to be the newly created Program class:

[image: 'Startup object' settings in the application's properties]

Usage

Constructor injection can now be used in any window (e.g. MainWindow) and view model:

using System.Windows;

public partial class MainWindow : Window
{
 public MainWindow(MainWindowViewModel viewModel)
 {
 InitializeComponent();

 // Assign to the data context so binding can be used.
 base.DataContext = viewModel;
 }
}

public class MainWindowViewModel
{
 private readonly IQueryProcessor queryProcessor;
 private readonly IUserContext userContext;

 public MainWindowViewModel(
 IQueryProcessor queryProcessor, IUserContext userContext)
 {
 this.queryProcessor = queryProcessor;
 this.userContext = userContext;
 }

 public IEnumerable<IUser> Users => this.queryProcessor.Execute(new GetAllUsers());
}

Footnotes

Diagnostic Services

The Diagnostic Services allow you to verify, analyze, diagnose, and visualize the container’s configuration to search for common configuration mistakes.

Simple Injector knows about several common issues that might arise when composing object graphs, and can expose this information to the developer via its diagnostics API. Simple Injector classifies the issues in two severities: information messages and diagnostic warnings:

	Information messages are are hints of things might want to look into, such as possible Single Responsibility Principle violations. Information messages can be requested by supplying your Container instance to the Analyzer.Analyze method.

	Diagnostic warnings on the other hand are strong indications that there is a problem with your configuration. See them as the Simple Injector equivalent of C# warnings: Your code will compile (as in: Simple Injector will be able to resolve your objects), but you rather want to fix the warning or otherwise explicitly suppress it. Like information messages, warnings can be requested by calling Analyzer.Analyze. But more conveniently, warnings will be reported in the form of an exception when you call Container.Verify().

This document goes in further detail how to obtain and interpreter these messages.

Supported Diagnostic Warnings

	Lifestyle Mismatches

	Short Circuited Dependencies

	Torn Lifestyle

	Ambiguous Lifestyles

	Disposable Transient Components

Supported Information Messages

	Potential Single Responsibility Violations

	Container-Registered Types

How to view diagnostic results

When you call Container.Verify() at the end of the configuration process, Simple Injector will do two things:

	It runs a simple check on all registrations to see if all components can be created. This is done by calling their constructors and injecting their dependencies. If any registrations are missing, an exception is thrown

	The container checks for diagnostic warnings. If there are any warnings, a exception is thrown that contains a summary of all reported diagnostic warnings.

Tip: Always call Verify() when you’re done configuring the Container. This allows your application to fail-fast in case of configuration problems.

There are two ways to view the diagnostic results—results can be viewed visually during debugging in Visual Studio and programmatically by calling the Diagnostic API.

Diagnostic results are available during debugging in Visual Studio after calling Container.Verify(). Set a breakpoint after the line that calls Verify() and when the breakpoint hits, hover over the Container instance with the mouse. The debugger context menu will appear for the container variable which you can unfold to view the diagnostic results. This might look like this:

[image: Diagnostics Debugger View context menu]
Another option is to add the container variable to the Visual Studio Watch window by right clicking on the variable and selecting ‘Add Watch’ in the context menu:

[image: Diagnostics debugger view watch window]
The Debugger View also allows visualizing your application’s dependency graphs. This can give you a good view of what the end result of your DI configuration is. By drilling into the list of Registrations or Root Registrations, you can select the text visualizer (the magnifying glass icon) on the DependencyGraph property on any of the listed registrations:

[image: Viewing dependency graphs]

Note: Root Registrations are registrations that are not depended upon by any other registration (or at least, not that Simple Injector can statically determine). They form the starting point of an object graph and are usually the types that are directly resolved from the container.

This same information can be requested programmatically by using the Diagnostic API. The Diagnostic API is located in the SimpleInjector.Diagnostics namespace. Interacting with the Diagnostic API is especially useful for automated testing. The following is an example of an integration test that checks whether the container is free of configuration warnings and information messages:

[TestMethod]
public void Container_Never_ContainsDiagnosticWarnings()
{
 // Arrange
 var container = Bootstrapper.GetInitializedContainer();

 container.Verify(VerificationOption.VerifyOnly);

 // Assert
 var results = Analyzer.Analyze(container);

 Assert.IsFalse(results.Any(), Environment.NewLine +
 string.Join(Environment.NewLine,
 from result in results
 select result.Description));
}

Object graphs can be visualized programmatically as well, by calling the VisualizeObjectGraph method on an InstanceProducer:

InstanceProducer producer = container.GetRegistration(typeof(UserListController));

string graph = producer.VisualizeObjectGraph();

The value returned by VisualizeObjectGraph is identical as what would be shown in the DependencyGraph property in the debugger:

UserListController(// Transient
 SqlRepository<User>(// Transient
 SqlConnectionFactory()), // Singleton
 FileLogger()) // Singleton

The visualized graph shows a textual representation of the graph with a C#-like syntax. By default, the graph visualized using VisualizeObjectGraph contains information about the lifestyle of each component. There is, however, a VisualizeObjectGraph overload that allows controlling the visualized graph:

InstanceProducer producer = container.GetRegistration(typeof(UserListController));

string graph = producer.VisualizeObjectGraph(new VisualizationOptions
{
 IncludeLifestyleInformation = false, // true by default
 UseFullyQualifiedTypeNames = false // false by default
});

In this case the graph variable would contain the following information:

UserListController(
 SqlRepository<User>(
 SqlConnectionFactory()),
 FileLogger())

A call to Container.Verify() forces the container to fail fast when any diagnostic warning is detected. A call to Verify() defaults to Verify(VerificationOption.VerifyAndDiagnose). When called, the container will check for all the warning types, since they are most likely to cause bugs in your application. By calling this overload during application startup, or inside an integration test, you’ll keep the feedback cycle as short as possible, and you’ll get notified about possible bugs that otherwise might have stayed undetected for much too long.

The diagnostic analysis, however, can also be suppressed by calling Verify(VerificationOption.VerifyOnly). In that case, the container will only perform the rudimentary checks to see whether all registrations can be resolved. This can be useful especially in case you want to call Analyzer.Analyze(container) to get both information messages and diagnostic warnings at the same time.

Suppressing warnings

There are rare cases that you want to ignore the warning system for specific registrations. There are scenarios where you are sure that the presented warning does not cause any harm in your case and changing the application’s design is not feasible. In such situation you can suppress warnings on a case-by-case basis. This prevents a call to Verify() from throwing an exception, it prevents the warning from popping up in the debugger, and it prevents the Analyzer.Analyze() method from returning that warning.

A warning can be suppressed by disabling a specific warning type on a Registration object. Example:

var registration =
 Lifestyle.Transient.CreateRegistration(typeof(HomeController), container);

container.AddRegistration(typeof(HomeController), registration);

registration.SuppressDiagnosticWarning(DiagnosticType.DisposableTransientComponent);

In the previous code sample, a Registration instance for the HomeController type is created and registered in the container. This Registration instance is explicitly marked to suppress the diagnostic warning type Disposable Transient Component.

Suppressing this warning type for an MVC controller makes sense, because the ASP.NET (classic) MVC framework will ensure proper disposal of MVC controllers.

Alternatively, you can also request an already made registered and suppress a warning on that:

var registration = container.GetRegistration(typeof(HomeController)).Registration;

registration.SuppressDiagnosticWarning(DiagnosticType.DisposableTransientComponent);

Tip: The RegisterMvcControllers extension method of the SimpleInjector.Integration.Web.Mvc.dll will batch-register all MVC controllers and will automatically suppress the Disposable Transient Component warning on controller types.

Limitations

Warning: Although the Container can spot several configuration mistakes, be aware that there will always be ways to make configuration errors that the Diagnostic Services cannot identify. Wiring your dependencies is a delicate matter and should be done with care. Always follow best practices.

The Diagnostic Services work by analyzing all information that is known by the container. In general, only relationships between types that can be statically determined (such as constructor arguments) can be analyzed. The Container uses the following information for analysis:

	Constructor arguments of types that are created by the container (auto-wired types).

	Dependencies added by Decorators.

	Dependencies that are not registered explicitly but are referenced as constructor argument (this included types that got created through unregistered type resolution).

The Diagnostic Services cannot analyze the following:

	Types that are completely unknown, because these types are not registered explicitly and no registered type depends on them. In general you should register all root types (types that are requested directly by calling GetInstance<T>(), such as MVC Controllers) explicitly.

	Open-generic registrations that are resolved as root type (no registered type depends on them). Since the container uses unregistered type resolution, those registrations will be unknown until they are resolved. Prefer registering each closed-generic version explicitly, or add unit tests to verify that these root types can be resolved.

	Dependencies added using the RegisterInitializer#1 method:

container.RegisterInitializer<IService>(service => {
 // These dependencies will be unknown during diagnosis
 service.Dependency = new Dependency();
 service.TimeProvider = container.GetInstance<ITimeProvider>()
});

	Types that are created manually by registering a Func<T> delegate using one of the Register<TService>(Func<TService>)#2 overloads, for instance:

container.Register<IService>(() => new MyService(
 // These dependencies will be unknown during diagnosis
 container.GetInstance<ILogger>(),
 container.GetInstance<ITimeProvider>()));

	Dependencies that are resolved by requesting them manually from the Container, for instance by injecting the Container into a class and then calling container.GetInstance<T>() from within that class:

public class MyService : IService
{
 private ITimeProvider provider;

 // Type depends on the container (don't do this)
 public MyService(Container container)
 {
 // This dependency will be unknown during diagnosis
 this.provider = container.GetInstance<ITimeProvider>();
 }
});

Tip: Try to prevent depending on any of the designs listed above because they all prevent you from having a verifiable configuration and trustworthy diagnostic results.

Footnotes

	#1

	https://simpleinjector.org/ReferenceLibrary/?topic=html/M_SimpleInjector_Container_RegisterInitializer__1.htm

	#2

	https://simpleinjector.org/ReferenceLibrary/?topic=html/M_SimpleInjector_Container_Register__1_2.htm

Diagnostic Warning - Lifestyle Mismatches

Severity

Warning

Cause

The component depends on a service with a lifestyle that is shorter than that of the component.

Warning Description

In general, components should only depend on other components that are configured to live at least as long. In other words, it is safe for a transient component to depend on a singleton, but not the other way around. Because components store a reference to their dependencies in (private) instance fields, those dependencies are kept alive for the lifetime of that component. This means that dependencies that are configured with a shorter lifetime than their consumer, accidentally live longer than intended. This can lead to all sorts of bugs, such as hard to debug multi-threading issues.

The Diagnostic Services detect this kind of misconfiguration and report it. The container will be able to compare all built-in lifestyles (and sometimes even custom lifestyles). Here is an overview of the built-in lifestyles ordered by their length:

	Transient

	Scoped

	Singleton

Note: This kind of error is also known as Captive Dependency#1.

Note: Lifestyle mismatches are such a common source of bugs, that the container always checks for mismatches the first time a component is resolved, no matter whether you call Container.Verify() or not. This behavior can be suppressed by setting the Container.Options.SuppressLifestyleMismatchVerification property, but you are advised to keep the default settings.

How to Fix Violations

There are multiple ways to fix this violation:

	Change the lifestyle of the component to a lifestyle that is as short as or shorter than that of the dependency.

	Change the lifestyle of the dependency to a lifestyle as long as or longer than that of the component.

	Instead of injecting the dependency, inject a factory for the creation of that dependency and call that factory every time an instance is required.

When to Ignore Warnings

Do not ignore these warnings. False positives for this warning are rare and even when they occur, the registration or the application design can always be changed in a way that the warning disappears.

Example

The following example shows a configuration that will trigger the warning:

var container = new Container();

container.Register<IUserRepository, InMemoryUserRepository>(Lifestyle.Transient);

// RealUserService depends on IUserRepository
container.Register<RealUserService>(Lifestyle.Singleton);

// FakeUserService depends on IUserRepository
container.Register<FakeUserService>(Lifestyle.Singleton);

container.Verify();

The RealUserService component is registered as Singleton but it depends on IUserRepository which is configured with the shorter Transient lifestyle. Below is an image that shows the output for this configuration in a watch window. The watch window shows two mismatches and one of the warnings is unfolded.

[image: Diagnostics debugger view watch window with lifestyle mismatches]
The following example shows how to query the Diagnostic API for Lifetime Mismatches:

// using SimpleInjector.Diagnostics;

var container = /* get verified container */;

var results = Analyzer.Analyze(container)
 .OfType<LifestyleMismatchDiagnosticResult>();

foreach (var result in results)
{
 Console.WriteLine(result.Description);
 Console.WriteLine("Lifestyle of service: " +
 result.Relationship.Lifestyle.Name);

 Console.WriteLine("Lifestyle of service's dependency: " +
 result.Relationship.Dependency.Lifestyle.Name);
}

Working with Scoped components

Simple Injector’s Lifestyle Mismatch verification is strict and will warn about injecting Transient dependencies into Scoped components. This is because Transient, in the context of Simple Injector, means short lived. A Scoped component, however, could live for quite a long time, depending on the time you decide to keep the Scope alive. Simple Injector does not know how your application handles scoping.

This, however, can be a quite restrictive model. Especially for applications where the lifetime of a scope equals that of a web request. In that case the Scope lives very short, and in that case the difference in lifetime between the Transient and Scoped lifestyle might be non-existing. It can, therefore, make sense in these types of applications to loosen the restriction and allow Transient dependencies to be injected into Scoped consumers. Especially because Simple Injector does track Scoped dependencies and allows them to be disposed, while Transient components are not tracked. See the Disposable Transient Components diagnostic warning for more information on this behavior.

To allow Transient dependencies to be injected into Scoped consumers without causing verification warnings, you can configure Options.UseLoosenedLifestyleMismatchBehavior as follows:

var container = new Container();

container.Options.UseLoosenedLifestyleMismatchBehavior = true;

Note the Options.UseLoosenedLifestyleMismatchBehavior setting requires Simple Injector v4.9 or newer.

What about Hybrid lifestyles?

A Hybrid lifestyle is a mix between two or more other lifestyles. Here is an example of a custom lifestyle that mixes the Transient and Singleton lifestyles together:

var hybrid = Lifestyle.CreateHybrid(
 lifestyleSelector: () => someCondition,
 trueLifestyle: Lifestyle.Transient,
 falseLifestyle: Lifestyle.Singleton);

Note that this example is quite bizarre, since it is a very unlikely combination of lifestyles to mix together, but it serves us well for the purpose of this explanation.

As explained, components should only depend on equal length or longer lived components. But how long does a component with this hybrid lifestyle live? For components that are configured with the lifestyle defined above, it depends on the implementation of someCondition. But without taking this condition into consideration, we can say that it will at most live as long as the longest wrapped lifestyle (Singleton in this case) and at least live as long as shortest wrapped lifestyle (in this case Transient).

From the Diagnostic Services’ perspective, a component can only safely depend on a hybrid-lifestyled service if the consuming component’s lifestyle is shorter than or equal the shortest lifestyle the hybrid is composed of. On the other hand, a hybrid-lifestyled component can only safely depend on another service when the longest lifestyle of the hybrid is shorter than or equal to the lifestyle of the dependency. Thus, when a relationship between a component and its dependency is evaluated by the Diagnostic Services, the longest lifestyle is used in the comparison when the hybrid is part of the consuming component, and the shortest lifestyle is used when the hybrid is part of the dependency.

This does imply that two components with the same hybrid lifestyle can’t safely depend on each other. This is true since in theory the supplied predicate could change results in each call. In practice however, those components would usually be able safely relate, since it is normally unlikely that the predicate changes lifestyles within a single object graph. This is an exception the Diagnostic Services can make pretty safely. From the Diagnostic Services’ perspective, components can safely be related when both share the exact same lifestyle instance and no warning will be displayed in this case. This does mean however, that you should be very careful using predicates that change the lifestyle during the object graph.

Iterating injected collections during construction can lead to warnings

Simple Injector v4.5 improved the ability to find Lifestyle Mismatches by trying to detect when injected collections are iterated during object composition. This can lead to warnings similar to the following:

{dependency} is part of the {collection} that is injected into {consumer}. The problem in {consumer} is that instead of storing the injected {collection} in a private field and iterating over it at the point its instances are required, {dependency} is being resolved (from the collection) during object construction. Resolving services from an injected collection during object construction (e.g. by calling {parameter name}.ToList() in the constructor) is not advised.

This warning is stating that the collection (e.g. an IEnumerable<ILogger>), which was injected into a class called consumer, was iterated during object construction—most likely inside the constructor.

The following code will reproduce the issue:

public class Consumer
{
 private readonly IEnumerable<ILogger> loggers;
 public Consumer(IEnumerable<ILogger> loggers)
 {
 // Calling ToArray will cause the warning
 this.loggers = loggers.ToArray();
 }
}

// Registrations
var container = new Container();

container.Collection.Append<ILogger, MyLogger>(Lifestyle.Transient);
container.Register<Consumer>(Lifestyle.Singleton);

container.Verify();

This warning will appear in case the following conditions hold:

	The consuming component is registered as Singleton. In this case, Consumer is registered as Singleton.

	The injected collection contains any components with a lifetime smaller than Singleton. In this case, the injected IEnumerable<ILogger> contains a component called MyLogger with the Transient lifestyle.

	The injected collection is iterated in a way that its instances are created and returned. In this case, the call to .ToArray() causes the MyLogger component to be marked as Lifestyle Mismatched.

All collection abstractions (i.e. IEnumerable<T>, IList<T>, IReadOnlyList<T>, ICollection<T>, and IReadOnlyCollection<T>) that Simple Injector injects behave as streams. This means that during injection no instances are created. Instead, instances are created according to their lifestyle every time the stream is iterated. This means that storing a copy of the injected stream, as the Consumer in the previous example did, can cause Lifestyle Mismatches, which is why Simple Injector warns about this.

Do note that it is impossible for Simple Injector to detect whether you store the original stream or its copy in its private instance field. This means that Simple Injector will report the warning, even when Consumer is written as follows:

public class Consumer
{
 private readonly IEnumerable<ILogger> loggers;
 public Consumer(IEnumerable<ILogger> loggers)
 {
 if (!loggers.ToArray().Any()) throw new ArgumentException();
 this.loggers = loggers;
 }
}

In this case, Simple Injector will still report the Lifestyle Mismatch between Consumer and MyLogger even though this is a false positive.

Even though false positives might occur, best practice is to prevent iterating the injected stream inside the constructor, as prescribed here#2.

Footnotes

	#1

	https://blog.ploeh.dk/2014/06/02/captive-dependency/

	#2

	https://blog.ploeh.dk/2011/03/03/InjectionConstructorsshouldbesimple/

Diagnostic Warning - Short-Circuited Dependencies

Severity

Warning

Cause

The component depends on an unregistered concrete type where there exists a registration that uses this concrete type as its implementation.

Warning Description

This warning signals the possible use of a short-circuited dependency in a component. A short-circuited dependency is:

	a concrete type

	that is not registered as itself (i.e. not registered as Register<TConcrete> or its non-generic equivalent)

	and is referenced by another component (most likely using a constructor argument)

	and exists as TImplementation in an explicitly made Register<TService, TImplementation>() registration (or its non-generic equivalent)

When a component depends on a short-circuited dependency, the application might be wired incorrectly because the flagged component gets a different instance of that concrete type than other components in the application will get. This can result in incorrect behavior.

How to Fix Violations

Let the component depend on the abstraction described in the warning message instead of depending directly on the concrete type. If the warning is a false positive and the component (and all other components that depend directly on this concrete type) should indeed get a transient instance of that concrete type, register the concrete type explicitly in the container using the transient lifestyle.

When to Ignore Warnings

Do not ignore these warnings. False positives for this warning are rare and even when they occur, the registration or the application design can always be changed or the concrete type can be registered explicitly in the container.

Example

container.Register<IUnitOfWork, MyUnitOfWork>(Lifestyle.Scoped);
container.Register<HomeController>();

// Definition of HomeController
public class HomeController : Controller
{
 private readonly MyUnitOfWork uow;

 public HomeController(MyUnitOfWork uow)
 {
 this.uow = uow;
 }
}

In this example HomeController depends on MyUnitOfWork. MyUnitOfWork however is not registered explicitly, but IUnitOfWork is. Furthermore, IUnitOfWork is registered with a Scoped lifestyle. However, since MyUnitOfWork is a concrete unregistered type, the container will create it on your behalf with the Transient lifestyle. This will typically be a problem because, during a request, the HomeController will get a different instance than other types that depend on IUnitOfWork while the intended use of IUnitOfWork is to have a single instance per web request.

For Unit of Work implementations this is typically a problem; the unit of work defines an atomic operation and creating multiple instances of such a unit of work in a single web request means that the work is split up in multiple (database) transactions (breaking consistency) or could result in part of the work not being committed at all.

The MyUnitOfWork type is called ‘short circuited’ because HomeController skips the IUnitOfWork dependency and directly depends on MyUnitOfWork. In other words, HomeController short circuits to MyUnitOfWork.

Here is an example of a short-circuited dependency in the watch window:

[image: Debugger watch window showing short circuited dependency]
The following example shows how to query the Diagnostic API for Short-Circuited Dependencies:

// using SimpleInjector.Diagnostics;

var container = /* get verified container */;

var results = Analyzer.Analyze(container)
 .OfType<ShortCircuitedDependencyDiagnosticResult>();

foreach (var result in results)
{
 Console.WriteLine(result.Description);
 Console.WriteLine(
 "Lifestyle of service with the short-circuited dependency: " +
 result.Relationship.Lifestyle.Name);

 Console.WriteLine("One of the following types was expected instead:");
 foreach (var expected in result.ExpectedDependencies)
 {
 Console.WriteLine("-" + expected.ServiceType.FullName);
 }
}

Footnotes

Diagnostic Warning - Torn Lifestyle

Severity

Warning

Cause

Multiple registrations with the same lifestyle map to the same component.

Warning Description

When multiple Registration instances with the same lifestyle map to the same component, the component is said to have a torn lifestyle. The component is considered torn because each Registration instance will have its own cache of the given component, which can potentially result in multiple instances of the component within a single scope. When the registrations are torn the application may be wired incorrectly which could lead to unexpected behavior.

Note: With the introduction of Simple Injector 4, the container will prevent the creation of multiple Registration instances for the same concrete type in most cases. This warning type should therefore be extremely rare. Torn lifestyles will only happen when a custom lifestyle circumvents the caching behavior of the Lifestyle.CreateRegistration overloads.

How to Fix Violations

Make sure the creation of Registration instances of your custom lifestyle goes through the Lifestyle.CreateRegistration method instead directly to Lifestyle.CreateRegistrationCore.

When to Ignore Warnings

This warning most likely signals a bug in a custom Lifestyle implementation, so warnings should typically not be ignored.

The warning can be suppressed on a per-registration basis as follows:

var fooRegistration = container.GetRegistration(typeof(IFoo)).Registration;
var barRegistration = container.GetRegistration(typeof(IBar)).Registration;
fooRegistration.SuppressDiagnosticWarning(DiagnosticType.TornLifestyle);
barRegistration.SuppressDiagnosticWarning(DiagnosticType.TornLifestyle);

Footnotes

Diagnostic Warning - Ambiguous Lifestyles

Severity

Warning

Cause

Multiple registrations with the different lifestyles map to the same component.

Warning Description

When multiple registrations with a different lifestyle map to the same component, the component is said to have ambiguous lifestyles. Having one single component with multiple lifestyles will cause instances of that component to be cached in different ways and this can lead to behavior that you might not expect.

For instance, having a single component that is registered both as Singleton and as Transient hardly ever makes sense, because the singleton registration implies that it is thread-safe, while the transient registration means that it, or one of its dependencies, is not thread-safe and should not be reused. One of the registrations of this component will likely be wrong.

How to Fix Violations

Make all registrations with the same lifestyle.

In case you really intended to have this single component to be registered with two different lifestyles, this is a clear indication that the component should actually be split into multiple smaller components, each with their specific lifestyle.

When to Ignore Warnings

Do not ignore these warnings. False positives for this warning are rare and even when they occur, the registration or the application design can always be changed in a way that the warning disappears.

Example

The following example shows a configuration that will trigger the warning:

var container = new Container();

container.Register<IFoo, FooBar>(Lifestyle.Transient);
container.Register<IBar, FooBar>(Lifestyle.Singleton);

container.Verify();

The FooBar component is registered once as Singleton for IFoo and once as Transient for IBar (assuming that FooBar implements both IFoo and IBar). Below is an image that shows the output for this configuration in a watch window. The watch window shows two mismatches and one of the warnings is unfolded.

[image: Diagnostics debugger view watch window with the ambiguous lifestyle warnings]
The issue can be fixed as follows:

var container = new Container();

container.Register<IFoo, FooBar>(Lifestyle.Singleton);
container.Register<IBar, FooBar>(Lifestyle.Singleton);

container.Verify();

Another way to fix this issue is by splitting FooBar into multiple smaller components:

var container = new Container();

// New component with singleton lifestyle
container.Register<IFooBarCommon, FooBarCommon>(Lifestyle.Singleton);

// Old component split into two, both depending on IFooBarCommon.
container.Register<IFoo, Foo>(Lifestyle.Transient);
container.Register<IBar, Bar>(Lifestyle.Singleton);

container.Verify();

The following example shows how to query the Diagnostic API for Torn Lifestyles:

// using SimpleInjector.Diagnostics;

var container = /* get verified container */;

var results = Analyzer.Analyze(container).OfType<AmbiguousLifestylesDiagnosticResult>();

foreach (var result in results)
{
 Console.WriteLine(result.Description);
 Console.WriteLine("Component name: " + result.ImplementationType.Name);
 Console.WriteLine("Lifestyles of component: " +
 string.Join(", ", result.Lifestyles.Select(l => l.Name)));
 Console.WriteLine("Conflicting registrations: " +
 string.Join(", ", result.ConflictingRegistrations.Select(
 r => r.ServiceType.Name)));
}

Footnotes

Diagnostic Warning - Disposable Transient Components

Severity

Warning

Cause

A registration has been made with the Transient lifestyle for a component that implements IDisposable.

Warning Description

A component that implements IDisposable would usually need deterministic clean-up but Simple Injector does not implicitly track and dispose components registered with the transient lifestyle.

How to Fix Violations

Register the component with the scoped lifestyle that is appropriate for the application you are working on. Scoped lifestyles ensure Dispose is called when an active scope ends.

When to Ignore Warnings

This warning can safely be ignored when:

	Dispose is called by the application code

	some manual registration ensures disposal

	a framework (such as ASP.NET) guarantees disposal of the component

	not disposing is not an issue.

The warning can be suppressed on a per-registration basis as follows:

Registration registration = container.GetRegistration(typeof(IService)).Registration;

registration.SuppressDiagnosticWarning(
 DiagnosticType.DisposableTransientComponent,
 "Reason of suppression");

Example

The following example shows a configuration that will trigger the warning:

var container = new Container();

// DisposableService implements IDisposable
container.Register<IService, DisposableService>(Lifestyle.Transient);

container.Verify();

[image: Diagnostics debugger view watch window with the disposable transient component warning.]
The issue can be fixed as follows:

var container = new Container();
// Select the scoped lifestyle that is appropriate for the application
// you are building. For instance:
container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

// DisposableService implements IDisposable
container.Register<IService, DisposableService>(Lifestyle.Scoped);

container.Verify();

The following example shows how to query the Diagnostic API for Disposable Transient Components:

// using SimpleInjector.Diagnostics;

var container = /* get verified container */;

var results = Analyzer.Analyze(container)
 .OfType<DisposableTransientComponentDiagnosticResult>();

foreach (var result in results)
{
 Console.WriteLine(result.Description);
}

Optionally you can let transient services dispose when a scope ends. Here’s an example of an extension method that allows registering transient instances that are disposed when the specified scope ends:

public static void RegisterDisposableTransient<TService, TImplementation>(
 this Container c)
 where TImplementation: class, IDisposable, TService
 where TService : class
{
 var scoped = Lifestyle.Scoped;
 var r = Lifestyle.Transient.CreateRegistration<TImplementation>(c);
 r.SuppressDiagnosticWarning(DiagnosticType.DisposableTransientComponent, "ignore");
 c.AddRegistration(typeof(TService), r);
 c.RegisterInitializer<TImplementation>(o => scoped.RegisterForDisposal(c, o));
}

The following code snippet show the usage of this extension method:

var container = new Container();
container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

container.RegisterDisposableTransient<IService, ServiceImpl>();

This ensures that each time a ServiceImpl is created by the container, it is registered for disposal when the scope - a web request in this case - ends. This can of course lead to the creation and disposal of multiple ServiceImpl instances during a single request.

Note: To be able to dispose an instance, the RegisterForDisposal will store the reference to that instance in the scope. This means that the instance will be kept alive for the lifetime of that scope.

Warning: Be careful to not register any services for disposal that will outlive that scope (such as services registered as singleton), since a service cannot be used once it has been disposed. This would typically result in ObjectDisposedExceptions and this will cause your application to break.

Footnotes

Diagnostic Warning - Potential Single Responsibility Violations

Severity

Information

Cause

The component depends on too many services.

Warning Description

Psychological studies show that the human mind has difficulty dealing with more than seven things at once. This is related to the concept of High Fan In - Low Fan Out#1. Lowering the number of dependencies (fan out) that a class has can therefore reduce complexity and increase maintainability of such class.

So in general, components should only depend on a few other components. When a component depends on many other components (usually caused by constructor over-injection), it might indicate that the component has too many responsibilities. In other words it might be a sign that the component violates the Single Responsibility Principle#2 (SRP). Violations of the SRP will often lead to maintainability issues later on in the application lifecycle.

The general consensus is that a constructor with more than 4 or 5 dependencies is a code smell. To prevent too many false positives, the threshold for the Diagnostic Services is 7 dependencies, so you’ll start to see warnings on types with 8 or more dependencies.

How to Fix Violations

The article Dealing with constructor over-injection#3, Mark Seemann goes into detail how to about fixing the root cause of constructor over-injection. Two solutions in particular come to mind.

Note that moving dependencies out of the constructor and into properties might solve the constructor over-injection code smell, but does not solve a violation of the SRP, since the number of dependencies doesn’t decrease.

Moving those properties to a base class also doesn’t solve the SRP violation. Often derived types will still use the dependencies of the base class making them still violating the SRP and even if they don’t, the base class itself will probably violate the SRP or have a high fan out.

Those base classes will often just be helpers to implement all kinds of cross-cutting concerns. Instead of using base classes, a better way to implementing cross-cutting concerns is through decorators.

When to Ignore Warnings

This warning can safely be ignored when the type in question does not violate the SRP and the number of dependencies is stable (does not change often).

The warning can be suppressed on a per-registration basis as follows:

Registration registration = container.GetRegistration(typeof(IFoo)).Registration;

registration.SuppressDiagnosticWarning(DiagnosticType.SingleResponsibilityViolation);

Example

public class Foo : IFoo
{
 public Foo(
 IUnitOfWorkFactory uowFactory,
 CurrencyProvider currencyProvider,
 IFooPolicy fooPolicy,
 IBarService barService,
 ICoffeeMaker coffeeMaker,
 IKitchenSink kitchenSink,
 IIceCubeProducer iceCubeProducer,
 IWaterCooker waterCooker)
 {
 }
}

The Foo class has 8 dependencies and when it is registered in the container, it will result in the warning. Here is an example of this warning in the watch window:

[image: Debugger watch window showing the SRP violation]
The following example shows how to query the Diagnostic API for possible Single Responsibility Violations:

// using SimpleInjector.Diagnostics;

var container = /* get verified container */;

var results = Analyzer.Analyze(container)
 .OfType<SingleResponsibilityViolationDiagnosticResult>();

foreach (var result in results)
{
 Console.WriteLine(result.ImplementationType.Name +
 " has " + result.Dependencies.Count + " dependencies.");
}

Footnotes

	#1

	https://it.toolbox.com/blogs/enterprise-solutions/design-principles-fanin-vs-fanout-16088

	#2

	https://en.wikipedia.org/wiki/Single_responsibility_principle

	#3

	https://deals.manningpublications.com/DependencyInjectioninNET.pdf

Diagnostic Warning - Container-registered Types

Severity

Information

Cause

A concrete type that was not registered explicitly and was not resolved using unregistered type resolution, but was created by the container using the default lifestyle.

Warning Description

The Container-Registered Types warning shows all concrete types that weren’t registered explicitly, but registered by the container as transient for you, because they were referenced by another component’s constructor or were resolved through a direct call to container.GetInstance<T>() (inside a RegisterInitializer#1 registered delegate for instance).

This warning deserves your attention, since it might indicate that you program to implementations, instead of abstractions. Although the Lifestyle Mismatches and Short Circuited Dependencies warnings are a very strong signal of a configuration problem, this Container-Registered Types warnings is just a point of attention.

How to Fix Violations

Let components depend on an interface that describe the contract that this concrete type implements and register that concrete type in the container by that interface.

When to Ignore Warnings

If your intention is to resolve those types as transient and don’t depend directly on their concrete types, this warning can in general be ignored safely.

The warning can be suppressed on a per-registration basis as follows:

var registration = container.GetRegistration(typeof(HomeController)).Registration;

registration.SuppressDiagnosticWarning(DiagnosticType.ContainerRegisteredComponent);

Example

var container = new Container();

container.Register<HomeController>();

container.Verify();

// Definition of HomeController
public class HomeController : Controller
{
 private readonly SqlUserRepository repository;

 public HomeController(SqlUserRepository repository)
 {
 this.repository = repository;
 }
}

The given example registers a HomeController class that depends on an unregistered SqlUserRepository class. Injecting a concrete type can lead to problems, such as:

	It makes the HomeController hard to test, since concrete types are often hard to fake (or when using a mocking framework that fixes this, would still result in unit tests that contain a lot of configuration for the mocking framework, instead of pure test logic) making the unit tests hard to read and hard to maintain.

	It makes it harder to reuse the class, since it expects a certain implementation of its dependency.

	It makes it harder to add cross-cutting concerns (such as logging, audit trailing and authorization) to the system, because this must now either be added directly in the SqlUserRepository class (which will make this class hard to test and hard to maintain) or all constructors of classes that depend on SqlUserRepository must be changed to allow injecting a type that adds these cross-cutting concerns.

Instead of depending directly on SqlUserRepository, HomeController can better depend on an IUserRepository abstraction:

var container = new Container();

container.Register<IUserRepository, SqlUserRepository>();
container.Register<HomeController>();

container.Verify();

// Definition of HomeController
public class HomeController : Controller
{
 private readonly IUserRepository repository;

 public HomeController(IUserRepository repository)
 {
 this.repository = repository;
 }
}

Tip: It would probably be better to define a generic IRepository<T> abstraction. This makes easy to batch registration implementations and allows cross-cutting concerns to be added using decorators.

Footnotes

	#1

	https://simpleinjector.org/ReferenceLibrary/?topic=html/M_SimpleInjector_Container_RegisterInitializer__1.htm

How To

	How to Register factory delegates

	How to Resolve instances by key

	How to Register multiple interfaces with the same implementation

	How to Override existing registrations

	How to Verify the container’s configuration

	How to Work with dependency injection in multi-threaded applications

	How to Package registrations

Register factory delegates

Simple Injector allows you to register a Func<T> delegate for the creation of an instance. This is especially useful in scenarios where it is impossible for the Container to create the instance. There are overloads of the Register method available that accept a Func<T> argument:

container.Register<IMyService>(() => SomeSubSystem.CreateMyService());

In situations where a service needs to create multiple instances of a certain component, or needs to explicitly control the lifetime of such component, abstract factories can be used. Instead of injecting an IMyService, you should inject an IMyServiceFactory that creates new instances of IMyService:

// Definition
public interface IMyServiceFactory
{
 IMyService CreateNew();
}

// Implementation
sealed class ServiceFactory : IMyServiceFactory
{
 public IMyService CreateNew() => new MyServiceImpl();
}

// Registration
container.RegisterInstance<IMyServiceFactory>(new ServiceFactory());

// Usage
public class MyService
{
 private readonly IMyServiceFactory factory;

 public MyService(IMyServiceFactory factory)
 {
 this.factory = factory;
 }

 public void SomeOperation()
 {
 using (var service1 = this.factory.CreateNew())
 {
 // use service 1
 }

 using (var service2 = this.factory.CreateNew())
 {
 // use service 2
 }
 }
}

Instead of creating specific interfaces for your factories, you can also choose to inject Func<T> delegates into your services:

// Registration
container.RegisterInstance<Func<IMyService>>(() => new MyServiceImpl());

// Usage
public class MyService
{
 private readonly Func<IMyService> factory;

 public MyService(Func<IMyService> factory)
 {
 this.factory = factory;
 }

 public void SomeOperation()
 {
 using (var service1 = this.factory.Invoke())
 {
 // use service 1
 }
 }
}

This saves you from having to define a new interface and implementation per factory.

Note: On the downside however, this communicates less clearly the intent of your code and as a result might make your code harder to grasp.

When you choose Func<T> delegates over specific factory interfaces you can define the following extension method to simplify the registration of Func<T> factories:

// using System;
// using SimpleInjector;
// using SimpleInjector.Advanced;
public static void RegisterFuncFactory<TService, TImpl>(
 this Container container, Lifestyle lifestyle = null)
 where TService : class
 where TImpl : class, TService
{
 lifestyle = lifestyle ?? container.Options.DefaultLifestyle;
 var producer = lifestyle.CreateProducer<TService, TImpl>(container);
 container.RegisterInstance<Func<TService>>(producer.GetInstance);
}

// Registration
container.RegisterFuncFactory<IMyService, RealService>();

The extension method allows registration of a single factory.

To take this one step further, the following extension method allows Simple Injector to resolve all types using a Func<T> delegate by default:

// using System;
// using System.Linq;
// using System.Linq.Expressions;
// using SimpleInjector;
public static void AllowResolvingFuncFactories(this ContainerOptions options)
{
 options.Container.ResolveUnregisteredType += (s, e) =>
 {
 var type = e.UnregisteredServiceType;

 if (!type.IsClosedTypeOf(typeof(Func<>))) {
 return;
 }

 Type serviceType = type.GetGenericArguments().First();

 InstanceProducer registration =
 options.Container.GetRegistration(serviceType, true);

 Type funcType = typeof(Func<>).MakeGenericType(serviceType);

 var factoryDelegate = Expression.Lambda(funcType,
 registration.BuildExpression()).Compile();

 e.Register(Expression.Constant(factoryDelegate));
 };
}

// Registration
container.Options.AllowResolvingFuncFactories();

After calling this AllowResolvingFuncFactories extension method, the container allows resolving Func<T> delegates.

Warning: Registering Func<T> delegates by default is a design smell. The use of Func<T> delegates makes your design harder to follow and your system harder to maintain and test. Your system should only have a few of those factories at most. If you have many constructors in your system that depend on a Func<T>, please take a good look at your dependency strategy. The following article#1 goes into details about why Abstract Factories (such as Func<T>) are a design smell.

Lazy

Just like Func<T> delegates can be injected, Lazy<T> instances can also be injected into components. Lazy<T> is useful in situations where the creation of a component is time consuming and not always required. Lazy<T> enables you to postpone the creation of such a component until the moment it is actually required:

// Registration
container.Register<IMyService, RealService>();
container.Register<Lazy<IMyService>>(
 () => new Lazy<IMyService>(container.GetInstance<IMyService>));

// Usage
public class SomeController
{
 private readonly Lazy<IMyService> myService;

 public SomeController(Lazy<IMyService> myService)
 {
 this.myService = myService;
 }

 public void SomeOperation(bool someCondition)
 {
 if (someCondition)
 {
 this.myService.Value.Operate();
 }
 }
}

Instead of polluting the API of your application with Lazy<T> dependencies, however, it is usually cleaner to hide the Lazy<T> behind a proxy, as shown in the following example.

// Proxy definition
public class LazyServiceProxy : IMyService
{
 private readonly Lazy<IMyService> wrapped;

 public LazyServiceProxy(Lazy<IMyService> wrapped)
 {
 this.wrapped = wrapped;
 }

 public void Operate() => this.wrapped.Value.Operate();
}

// Registration
container.Register<RealService>();
container.Register<IMyService>(() => new LazyServiceProxy(
 new Lazy<IMyService>(container.GetInstance<RealService>)));

This way application components can simply depend on IMyService instead of Lazy<IMyService>:

// Usage
public class SomeController
{
 private readonly IMyService myService;

 public SomeController(IMyService myService)
 {
 this.myService = myService;
 }

 public void SomeOperation(bool someCondition)
 {
 if (someCondition)
 {
 this.myService.Operate();
 }
 }
}

Warning: The same warning applies to the use of Lazy<T> as it does for the use of Func<T> delegates. Further more, the constructors of your components should be simple, reliable and quick (as explained in this blog post#2 by Mark Seemann). That would remove the need for lazy initialization. For more information about creating an application and container configuration that can be successfully verified, please read the How To Verify the container’s configuration.

Resolve instances by key

Resolving instances by a key is a feature that is deliberately left out of Simple Injector, because it invariably leads to a design where the application tends to have numerous dependencies on the DI container itself. To resolve a keyed instance you will likely need to call directly into the Container instance and this leads to the Service Locator anti-pattern#3.

This doesn’t mean that resolving instances by a key is never useful. But resolving instances by a key is normally a job for a specific factory rather than the Container. This approach makes the design much cleaner, saves you from having to take numerous dependencies on the DI library and enables many scenarios that the DI container authors simply didn’t consider.

Note: The need for keyed registration can be an indication of ambiguity in the application design and a sign of a Liskov Substitution Principle#4 violation. Take a good look if each keyed registration shouldn’t have its own unique interface, or perhaps each registration should implement its own version of a generic interface.

Take a look at the following scenario, where you want to retrieve IRequestHandler instances by a string key. There are several ways to achieve this, but here is a simple but effective way, by defining an IRequestHandlerFactory:

// Definition
public interface IRequestHandlerFactory
{
 IRequestHandler CreateNew(string name);
}

// Usage
var factory = container.GetInstance<IRequestHandlerFactory>();
var handler = factory.CreateNew("customers");
handler.Handle(requestContext);

By inheriting from the BCL’s Dictionary<TKey, TValue>, creating an IRequestHandlerFactory implementation is almost a one-liner:

public class RequestHandlerFactory
 : Dictionary<string, Func<IRequestHandler>>, IRequestHandlerFactory
{
 public IRequestHandler CreateNew(string name) => this[name]();
}

With this class, you can register Func<IRequestHandler> factory methods by a key. With this in place the registration of keyed instances is a breeze:

var container = new Container();

container.Register<DefaultRequestHandler>();
container.Register<OrdersRequestHandler>();
container.Register<CustomersRequestHandler>();

container.RegisterInstance<IRequestHandlerFactory>(new RequestHandlerFactory
{
 { "default", () => container.GetInstance<DefaultRequestHandler>() },
 { "orders", () => container.GetInstance<OrdersRequestHandler>() },
 { "customers", () => container.GetInstance<CustomersRequestHandler>() },
});

Alternatively, the design can be changed to be a Dictionary<string, Type> instead. The RequestHandlerFactory can be implemented as follows:

public class RequestHandlerFactory : Dictionary<string, Type>, IRequestHandlerFactory
{
 private readonly Container container;

 public RequestHandlerFactory(Container container)
 {
 this.container = container;
 }

 public IRequestHandler CreateNew(string name) =>
 (IRequestHandler)this.container.GetInstance(this[name]);
}

The registration will then look as follows:

var container = new Container();

container.Register<DefaultRequestHandler>();
container.Register<OrdersRequestHandler>();
container.Register<CustomersRequestHandler>();

container.RegisterInstance<IRequestHandlerFactory>(new RequestHandlerFactory(container)
{
 { "default", typeof(DefaultRequestHandler) },
 { "orders", typeof(OrdersRequestHandler) },
 { "customers", typeof(CustomersRequestHandler) },
});

Note: Please remember the previous note about ambiguity in the application design. In the given example the design would probably be better of by using a generic IRequestHandler<TRequest> interface. This would allow the implementations to be auto-registered using a single line of code, saves you from using keys, and results in a configuration that is verifiable by the container.

A final option for implementing keyed registrations is to manually create the registrations and store them in a dictionary. The following example shows the same RequestHandlerFactory using this approach:

public class RequestHandlerFactory : IRequestHandlerFactory
{
 readonly Container container;
 readonly Dictionary<string, InstanceProducer<IRequestHandler>> producers =
 new Dictionary<string, InstanceProducer<IRequestHandler>>(
 StringComparer.OrdinalIgnoreCase);

 public RequestHandlerFactory(Container container)
 {
 this.container = container;
 }

 IRequestHandler IRequestHandlerFactory.CreateNew(string name) =>
 this.producers[name].GetInstance();

 public void Register<TImplementation>(string name)
 where TImplementation : class, IRequestHandler
 {
 var producer = Lifestyle.Transient
 .CreateProducer<IRequestHandler, TImplementation>(container);

 this.producers.Add(name, producer);
 }
}

The registration will then look as follows:

var container = new Container();

var factory = new RequestHandlerFactory(container);

factory.Register<DefaultRequestHandler>("default");
factory.Register<OrdersRequestHandler>("orders");
factory.Register<CustomersRequestHandler>("customers");

container.RegisterInstance<IRequestHandlerFactory>(factory);

The advantage of this method is that it completely integrates with the Container. Decorators can be applied to individual returned instances, types can be registered multiple times and the registered handlers can be analyzed using the Diagnostic Services.

The previous examples showed how registrations could be requested based on a key. Another common use case with multiple consumers of a given abstraction, is where each consumer requires a different implementation of that abstraction. In Simple Injector this can be achieved through Context based injection.

Register multiple interfaces with the same implementation

To adhere to the Interface Segregation Principle#5, it is important to keep interfaces narrow. Although in most situations implementations implement a single interface, it can sometimes be beneficial to have multiple interfaces on a single implementation. Here is an example of how to register this:

// Impl implements IInterface1, IInterface2 and IInterface3.
container.Register<IInterface1, Impl>(Lifestyle.Singleton);
container.Register<IInterface2, Impl>(Lifestyle.Singleton);
container.Register<IInterface3, Impl>(Lifestyle.Singleton);

var a = container.GetInstance<IInterface1>();
var b = container.GetInstance<IInterface2>();
var c = container.GetInstance<IInterface3>();

// Impl is a singleton and all GetInstance calls return the same instance.
Assert.AreEqual(a, b);
Assert.AreEqual(b, c);

At first glance the previous example would seem to cause three instances of Impl, but Simple Injector 4 will ensure that all three registrations will get the same instance.

Override existing registrations

The default behavior of Simple Injector is to fail when a service is registered for a second time. Most of the time the developer didn’t intend to override a previous registration and allowing this would lead to a configuration that would pass the container’s verification, but doesn’t behave as expected.

This design decision differs from most other DI libraries, where adding new registrations results in appending the collection of registrations for that abstraction. Registering collections in Simple Injector is an explicit action done using one of the Collection.Register#6 method overloads.

There are certain scenarios, however, where overriding is useful. An example of such is a bootstrapper project for a business layer that is reused in multiple applications (in both a web application, web service, and Windows service for instance). Not having a business layer-specific bootstrapper project would mean the complete DI configuration would be duplicated in the startup path of each application, which would lead to code duplication. In that situation the applications would roughly have the same configuration, with a few adjustments.

Best is to start by configuring all possible dependencies in the BL bootstrapper and leave out the service registrations where the implementation differs for each application. In other words, the BL bootstrapper would result in an incomplete configuration. After that, each application can finish the configuration by registering the missing dependencies. This way you still don’t need to override the existing configuration.

In certain scenarios it can be beneficial to allow an application override an existing configuration. The container can be configured to allow overriding as follows:

var container = new Container();

container.Options.AllowOverridingRegistrations = true;

// Register IUserService.
container.Register<IUserService, FakeUserService>();

// Replaces the previous registration
container.Register<IUserService, RealUserService>();

The previous example created a Container instance that allows overriding. It is also possible to enable overriding half way the registration process:

// Create a container with overriding disabled
var container = new Container();

// Pass container to the business layer.
BusinessLayer.Bootstrapper.Bootstrap(container);

// Enable overriding
container.Options.AllowOverridingRegistrations = true;

// Replaces the previous registration
container.Register<IUserService, RealUserService>();

Verify the container’s configuration

Dependency Injection promotes the concept of programming against abstractions. This makes your code much easier to test, change, and maintain. However, because the code itself isn’t responsible for maintaining the dependencies between implementations, the compiler will not be able to verify whether the dependency graph is correct when using a DI library.

When starting to use a Dependency Injection container, many developers see their application fail when it is deployed in staging or sometimes even production, because of container misconfigurations. This makes developers often conclude that Dependency Injection is bad, because the dependency graph cannot be verified. This conclusion, however, is incorrect. First of all, the use of Dependency Injection doesn’t require a DI library at all. The pattern is still valid, even without the use of tooling that will wire everything together for you. For some types of applications Pure DI#7 is even advisable. Second, although it is impossible for the compiler to verify the dependency graph when using a DI library, verifying the dependency graph is still possible and advisable.

Simple Injector contains a Verify() method, that iterates over all registrations and resolve an instance for each registration. Calling this method directly after configuring the container allows the application to fail during startup if the configuration is invalid.

Calling the Verify() method, however, is just part of the story. It is very easy to create a configuration that passes any verification, but still fails at runtime. Here are some tips to help you building a verifiable configuration:

	Stay away from implicit property injection, where the container is allowed to skip injecting the property if a corresponding or correctly registered dependency can’t be found. This will disallow your application to fail fast and will result in NullReferenceException’s later on. Only use implicit property injection when the property is truly optional, omitting the dependency still keeps the configuration valid, and the application still runs correctly without that dependency. Truly optional dependencies should be very rare, though—most of the time you should prefer injecting empty implementations (a.k.a. the Null Object pattern#8) instead of allowing dependencies to be a null reference. Explicit property injection, on the other hand, is better. With explicit property injection you force the container to inject a property and it will fail when it can’t succeed. However, you should prefer constructor injection whenever possible. Note that the need for property injection is often an indication of problems in the design. If you revert to property injection because you otherwise have too many constructor arguments, your class is probably violating the Single Responsibility Principle#9.

	Register all root objects explicitly. For instance, register all ASP.NET MVC Controller instances explicitly in the container (Controller instances are requested directly and are therefore called ‘root objects’). This way the container can check the complete dependency graph starting from the root object when you call Verify(). Prefer registering all root objects in an automated fashion, for instance by using reflection to find all root types. The Simple Injector ASP.NET MVC Integration NuGet Package#10, for instance, contains a RegisterMvcControllers#11 extension method that will do this for you and the WCF Integration NuGet Package#12 contains a similar RegisterWcfServices#13 extension method for this purpose.

	If any of your root types are generic you should explicitly register each required closed-generic version of the type instead of making a single open-generic registration per generic type. Simple Injector will not be able to guess the closed types that could be resolved (root types are not referenced by other types and there can be endless permutations of closed-generic types) and as such open-generic registrations are skipped by Simple Injector’s verification system. Making an explicit registration for each closed-generic root type allows Simple Injector to verify and diagnose those registrations.

	If registering root objects is not possible or feasible, test the creation of each root object manually at startup. The key here—again—is finding them all at once using reflection. By finding all root classes using reflection and instantiating them, you’ll find out (during app startup or through automated testing) whether there is a problem with your DI configuration or not.

	There are scenarios where some dependencies cannot yet be created during application startup. To ensure that the application can be started normally and the rest of the DI configuration can still be verified, abstract those dependencies behind a proxy or abstract factory. Try to keep those unverifiable dependencies to a minimum and keep good track of them, because you want to test them manually or using an integration test.

	But even if all registrations can be resolved successfully by the container, that still doesn’t mean your configuration is correct. It is very easy to accidentally misconfigure the container in a way that only shows up late in the development process. Simple Injector contains Diagnostics Services to help you spot common configuration mistakes. To help you, all the diagnostic warnings are integrated into the verification mechanism. This means that a call to Verify() will also check for diagnostic warnings for you. It is advisable to analyze the container by calling Verify or by using the diagnostic services either during application startup or as part of an automated test that does this for you.

TIP: A call to Verify causes the construction and compilation of the expression trees for all the container’s registrations—this can be a slow process when the container contains several thousands of components. In case verification causes application startup to take more time than required due to verification, consider wrapping the Verify call in an #IF DEBUG compiler directive, or run Verify only as part of an unit/integration test. This keeps startup time short, and moves the performance penalty to every first resolve of an individual registration.

Work with dependency injection in multi-threaded applications

Note: Simple Injector is designed for use in highly-concurrent applications and the container is thread safe. Its lock-free design allows it to scale linearly with the number of threads and processors in your system.

Many applications and application frameworks are inherently multi threaded. Working in multi-threaded applications forces developers to take special care. It is easy for a less-experienced developer to introduce a race condition in the code. Even although some frameworks such as ASP.NET make it easy to write thread-safe code, introducing a simple static field could break thread safety.

This same holds when working with DI containers in multi-threaded applications. The developer that configures the container should be aware of the risks of shared state. Not knowing which configured services are thread-safe is a sin. Registering a service that is not thread safe as singleton, will eventually lead to concurrency bugs. Those bugs usually only appear in production. They are often hard to reproduce and hard to find, making them extremely costly to fix. And even when you correctly configured a service with the correct lifestyle, when another component that depends on it accidentally has a longer lifetime, the service might be kept alive much longer and might even be accessible from other threads.

Dependency injection, however, can actually help in writing multi-threaded applications. Dependency injection forces you to wire all dependencies together in a single place in the application: the Composition Root#14. This means that there is a single place in the application that knows about how components behave, whether they are thread safe, and how they should be wired. Without this centralization, this knowledge would be scattered throughout the code base, making it very hard to change the behavior of a component.

Tip: Take a close look at the ‘Lifestyle Mismatches’ warnings in the Diagnostic Services. Lifestyle mismatches are a source of concurrency bugs.

Note: By default, Simple Injector will check for Lifestyle Mismatches for you when you resolve a service. In other words, Simple Injector will fail fast when there is a Lifestyle Mismatch in your configuration.

In a multi-threaded application, each thread should get its own object graph. This means that you should typically call GetInstance<T>() once at the beginning of the thread’s execution to get the root object for processing that thread (or request). The container will build an object graph with all root object’s dependencies. Some of those dependencies might be singletons—shared between all threads. Other dependencies might be transient—a new instance is created per dependency. Other dependencies might be thread specific, request specific, or with some other lifestyle. The application code itself is unaware of the way the dependencies are registered and that’s the way it is supposed to be.

For web applications, you typically call GetInstance<T>() at the beginning of the web request. In an ASP.NET MVC application, for instance, one Controller instance will be requested from the container (by the Controller Factory) per web request. When using one of the integration packages, such as the Simple Injector MVC Integration Quick Start NuGet package#15 for instance, you don’t have to call GetInstance<T>() yourself, the package will ensure this is done for you. Still, GetInstance<T>() is typically called once per request.

The advice of building a new object graph (calling GetInstance<T>()) at the beginning of a thread, also holds when manually starting a new (background) thread. Although you can pass on data to other threads, you should not pass on container-controlled dependencies to other threads. On each new thread, you should ask the container again for the dependencies. When you start passing dependencies from one thread to the other, those parts of the code have to know whether it is safe to pass those dependencies on. For instance, are those dependencies thread safe? This might be trivial to analyze in some situations, but prevents you to change those dependencies with other implementations—you have to remember that there is a place in your code where this is happening and you need to know which dependencies are passed on. You are decentralizing this knowledge again, making it harder to reason about the correctness of your DI configuration and making it easier to misconfigure the container in a way that causes concurrency problems.

Running code on a new thread can be done by adding a little bit of infrastructural code. Take for instance the following example where you want to send e-mail messages asynchronously. Instead of letting the caller implement this logic, it is better to hide the logic for asynchronicity behind an abstraction—a proxy. This ensures that this logic is centralized to a single place, and by placing this proxy inside the composition root, you prevent the application code to take a dependency on the container itself—letting application code take a dependency on the container is something that should be prevented.

// Synchronous implementation of IMailSender
public sealed class RealMailSender : IMailSender
{
 private readonly IMailFormatter formatter;

 public class RealMailSender(IMailFormatter formatter)
 {
 this.formatter = formatter;
 }

 void IMailSender.SendMail(string to, string message)
 {
 // format mail
 // send mail
 }
}

// Proxy for executing IMailSender asynchronously.
sealed class AsyncMailSenderProxy : IMailSender
{
 private readonly ILogger logger;
 private readonly Func<IMailSender> mailSenderFactory;

 public AsyncMailSenderProxy(ILogger logger, Func<IMailSender> mailSenderFactory)
 {
 this.logger = logger;
 this.mailSenderFactory = mailSenderFactory;
 }

 void IMailSender.SendMail(string to, string message)
 {
 // Run on a new thread
 Task.Factory.StartNew(() => this.SendMailAsync(to, message));
 }

 private void SendMailAsync(string to, string message)
 {
 // Here we run on a different thread and the
 // services should be requested on this thread.
 var mailSender = this.mailSenderFactory();

 try
 {
 mailSender.SendMail(to, message);
 }
 catch (Exception ex)
 {
 // logging is important, because we run on a different thread.
 this.logger.Log(ex);
 }
 }
}

In the Composition Root, instead of registering the MailSender, you register the AsyncMailSenderProxy as follows:

container.Register<ILogger, FileLogger>(Lifestyle.Singleton);
container.Register<IMailSender, RealMailSender>();
container.RegisterDecorator<IMailSender, AsyncMailSenderProxy>(Lifestyle.Singleton);

In this case the container will ensure that when an IMailSender is requested, a single AsyncMailSenderProxy is returned with a Func<IMailSender> delegate that will create a new RealMailSender when requested. The RegisterDecorator#16 overloads natively understand how to handle Func<Decoratee> dependencies. The Decorators section explains more about registering decorators.

Warning: Please note that the previous example is just meant for educational purposes. In practice, you want the sending of e-mails to go through a durable queue or outbox#17 to prevent loss of e-mails. Loss can occur when the mail server is unavailable, which is something that is guaranteed to happen at some point in time, even when the mail server is running locally.

Package registrations

Simple Injector has the notion of ‘packages’. A package is a group of container registrations packed into a class that implements the IPackage interface. This feature is similar to what other containers call Installers, Modules or Registries.

To use this feature, you need to install the SimpleInjector.Packaging NuGet package#18.

SimpleInjector.Packaging exists to accommodate applications that require plug-in like modularization, where parts of the application, packed with their own container registrations, can be independently compiled into a dll and ‘dropped’ into a folder, where the main application can pick them up, without the need for the main application to be recompiled and redeployed.

To accommodate this, those independent application parts can create a package by defining a class that implements the IPackage interface:

public class ModuleXPackage : IPackage
{
 public void RegisterServices(Container container)
 {
 container.Register<IService1, Service1Impl>();
 container.Register<IService2, Service2Impl>(Lifestyle.Scoped);
 }
}

After doing so, the main application can dynamically load these application modules, and make sure their packages are ran:

var assemblies =
 from file in new DirectoryInfo(pluginDirectory).GetFiles()
 where file.Extension.ToLower() == ".dll"
 select Assembly.Load(AssemblyName.GetAssemblyName(file.FullName));

container.RegisterPackages(assemblies);

As explained above, SimpleInjector.Packaging is specifically designed for loading configurations from assemblies that are loaded dynamically. In other scenarios the use of Packaging is discouraged.

For non-plug-in scenarios, all container registrations should be located as close as possible to the application’s entry point.

Note: The application’s entry point where all components are wired together is commonly referred to as the Composition Root. A detailed description of this concept can be found here#19.

Although even inside the Composition Root it might make sense to split the registration into multiple functions or even classes, as long as those registrations are available to the entry-point at compile time, it makes more sense to call them directly in code instead of by the use of reflection, as can be seen in the following example:

public void App_Start()
{
 var container = new Container();
 container.Options.DefaultScopedLifestyle = new WebRequestLifestyle();
 BusinessLayerBootstrapper.Bootstrap(container);
 PresentationLayerBootstrapper.Bootstrap(container);

 // add missing registrations here.

 container.Verify();
}

class BusinessLayerBootstrapper
{
 public static void Bootstrap(Container container) { ... }
}

class PresentationLayerBootstrapper
{
 public static void Bootstrap(Container container) { ... }
}

The previous example gives the same amount of componentization, while keeping everything visibly referenced from within the startup path. In other words, you can use your IDE’s go-to reference feature to jump directly to that code, while still being able to group things together.

On top of this, switching on or off groups of registrations based on configuration settings becomes simpler, as can be seen in the following example:

if (ConfigurationManager.AppSettings["environment"] != "production")
 MockedExternalServicesPackage.Bootstrap(container);
else
 ProductionExternalServicesPackage.Bootstrap(container);

Footnotes

	#1

	https://blogs.cuttingedge.it/steven/posts/2016/abstract-factories-are-a-code-smell/

	#2

	https://blog.ploeh.dk/2011/03/03/InjectionConstructorsshouldbesimple/

	#3

	https://blog.ploeh.dk/2010/02/03/ServiceLocatorisanAnti-Pattern/

	#4

	https://en.wikipedia.org/wiki/Liskov_substitution_principle

	#5

	https://en.wikipedia.org/wiki/Interface_segregation_principle

	#6

	https://simpleinjector.org/ReferenceLibrary/?topic=html/Overload_SimpleInjector_ContainerCollectionRegistrator_Register.htm

	#7

	https://blog.ploeh.dk/2014/06/10/pure-di/

	#8

	https://en.wikipedia.org/wiki/Null_Object_pattern

	#9

	https://en.wikipedia.org/wiki/Single_responsibility_principle

	#10

	https://nuget.org/packages/SimpleInjector.Integration.Web.Mvc

	#11

	https://simpleinjector.org/ReferenceLibrary/?topic=html/M_SimpleInjector_SimpleInjectorMvcExtensions_RegisterMvcControllers.htm

	#12

	https://nuget.org/packages/SimpleInjector.Integration.Wcf

	#13

	https://simpleinjector.org/ReferenceLibrary.v2/?topic=html/M_SimpleInjector_SimpleInjectorWcfExtensions_RegisterWcfServices.htm

	#14

	https://freecontent.manning.com/dependency-injection-in-net-2nd-edition-understanding-the-composition-root/

	#15

	https://nuget.org/packages/SimpleInjector.MVC3

	#16

	https://simpleinjector.org/ReferenceLibrary/?topic=html/Overload_SimpleInjector_Extensions_DecoratorExtensions_RegisterDecorator.htm

	#17

	http://gistlabs.com/2014/05/the-outbox/

	#18

	https://www.nuget.org/packages/SimpleInjector.Packaging/

	#19

	https://freecontent.manning.com/dependency-injection-in-net-2nd-edition-understanding-the-composition-root/

Advanced Scenarios

Although its name may not imply it, Simple Injector is capable of handling many advanced scenarios.

This chapter discusses the following subjects:

	Generics

	Batch-Registration / Auto-Registration

	Registration of open generic types

	Mixing collections of open-generic and non-generic components

	Unregistered type resolution

	Context-based injection / Contextual binding

	Property injection

	Covariance and Contravariance

	Registering plugins dynamically

Generics

.NET has superior support for generic programming and Simple Injector has been designed to make full use of it. Simple Injector arguably has the most advanced support for generics of all DI libraries. Simple Injector can handle any generic type and implementing patterns such as decorator, mediator, strategy, composite and chain of responsibility is a breeze.

Aspect-Oriented Programming is easy with Simple Injector’s advanced support for generics. Generic decorators with generic-type constraints can be registered with a single line of code and can be applied conditionally using predicates. Simple Injector can handle open-generic types, closed-generic types and partially-closed generic types. The sections below provides more detail on Simple Injector’s support for generic typing:

	Batch registration of non-generic types based on an open-generic interface

	Registering open generic types and working with partially-closed types

	Mixing collections of open-generic and non-generic components

	Resolving Covariant/Contravariant types

	Registration of generic decorators

Batch-Registration / Auto-Registration

Auto-registration or batch-registration is a way of registering a set of (related) types in one go based on some convention. This feature removes the need to constantly update the container’s configuration each and every time a new type is added. The following example show a series of manually registered repositories:

container.Register<IUserRepository, SqlUserRepository>();
container.Register<ICustomerRepository, SqlCustomerRepository>();
container.Register<IOrderRepository, SqlOrderRepository>();
container.Register<IProductRepository, SqlProductRepository>();
// and the list goes on...

To prevent having to change the container for each new repository we can use the non-generic registration overloads in combination with a simple LINQ query:

var repositoryAssembly = typeof(SqlUserRepository).Assembly;

var registrations =
 from type in repositoryAssembly.GetExportedTypes()
 where type.Namespace.StartsWith("MyComp.MyProd.DAL")
 from service in type.GetInterfaces()
 select new { service, implementation = type };

foreach (var reg in registrations)
{
 container.Register(reg.service, reg.implementation, Lifestyle.Transient);
}

Although many other DI libraries contain an advanced API for doing convention based registration, we found that doing this with custom LINQ queries is easier to write, more understandable, and can often prove to be more flexible than using a predefined and restrictive API.

Another interesting scenario is registering multiple implementations of a generic interface. Say, for instance, your application contains the following interface:

public interface IValidator<T>
{
 ValidationResults Validate(T instance);
}

Your application might contain many implementations of this interface for validating customers, employees, products, orders, etc. Without auto-registration you would probably end up with a set registrations similar to those you previously saw:

container.Register<IValidator<Customer>, CustomerValidator>();
container.Register<IValidator<Employee>, EmployeeValidator>();
container.Register<IValidator<Order>, OrderValidator>();
container.Register<IValidator<Product>, ProductValidator>();
// and the list goes on...

By using the Register overload for auto-registration, the same registrations can be made in a single line of code:

container.Register(typeof(IValidator<>), typeof(IValidator<>).Assembly);

By default, Register searches the supplied assemblies for all types that implement the IValidator<T> interface and registers each type by their specific (closed-generic) interface. It even works for types that implement multiple closed versions of the given interface.

Note: There is a Register overload available that takes a list of System.Type instances, instead a list of Assembly instances and there is a Container.GetTypesToRegister method that allows retrieving a list of types based on a given service type for a set of given assemblies. This gives you more control over how these types are registered.

Above are a couple of basic examples of the things you can do with auto-registration. A more advanced scenario could be the registration of multiple implementations of the same closed-generic type to a common interface, i.e. a set of types that all implement the same interface.

As an example, imagine the scenario where you have a CustomerValidator type and a GoldCustomerValidator type and they both implement IValidator<Customer> and you want to register them both at the same time. The earlier registration methods would throw an exception alerting you to the fact that you have multiple types implementing the same closed-generic type. The following registration, however, does enable this scenario:

var assemblies = new[] { typeof(IValidator<>).Assembly };
container.Collection.Register(typeof(IValidator<>), assemblies);

The code snippet registers all types from the given assembly that implement IValidator<T>. As you now have multiple implementations the container cannot inject a single instance of IValidator<T> and because of this, you need to register a collection. Because you register a collection, you can no longer call container.GetInstance<IValidator<T>>(). Instead instances can be retrieved by having an IEnumerable<IValidator<T>> constructor argument or by calling container.GetAllInstances<IValidator<T>>().

It is not generally regarded as best practice to have an IEnumerable<IValidator<T>> dependency in multiple class constructors (or accessed from the container directly). Depending on a set of types complicates your application design and can lead to code duplication. This can often be simplified with an alternate configuration. A better way is to have a single composite type that wraps IEnumerable<IValidator<T>> and presents it to the consumer as a single instance, in this case a CompositeValidator<T>:

public class CompositeValidator<T> : IValidator<T>
{
 private readonly IEnumerable<IValidator<T>> validators;

 public CompositeValidator(IEnumerable<IValidator<T>> validators)
 {
 this.validators = validators;
 }

 public ValidationResults Validate(T instance)
 {
 var allResults = ValidationResults.Valid;

 foreach (var validator in this.validators)
 {
 var results = validator.Validate(instance);
 allResults = ValidationResults.Join(allResults, results);
 }

 return allResults;
 }
}

This CompositeValidator<T> can be registered as follows:

container.Register(
 typeof(IValidate<>),
 typeof(CompositeValidator<>),
 Lifestyle.Singleton);

This registration maps the open-generic IValidator<T> interface to the open-generic CompositeValidator<T> implementation. Because the CompositeValidator<T> contains an IEnumerable<IValidator<T>> dependency, the registered types will be injected into its constructor. This allows you to let the rest of the application simply depend on the IValidator<T>, while registering a collection of IValidator<T> implementations under the covers.

Note: Simple Injector preserves the lifestyle of instances that are returned from an injected IEnumerable<T> instance. In reality you should not see the injected IEnumerable<IValidator<T>> as a collection of implementations—you should consider it a stream of instances. Simple Injector will always inject a reference to the same object (the IEnumerable<T> itself is a singleton) and each time you iterate the IEnumerable<T>, for each individual component, the container is asked to resolve the instance based on the lifestyle of that component. Regardless of the fact that the CompositeValidator<T> is registered as singleton, the validators it wraps will each have their own specific lifestyle.

The next section will explain mapping of open-generic types, just like the CompositeValidator<T> as seen above.

Registration of open-generic types

When working with generic interfaces, you will often see numerous implementations of that interface being registered:

container.Register<IValidate<Customer>, CustomerValidator>();
container.Register<IValidate<Employee>, EmployeeValidator>();
container.Register<IValidate<Order>, OrderValidator>();
container.Register<IValidate<Product>, ProductValidator>();
// and the list goes on...

As the previous section explained, this can be rewritten to the following one-liner:

container.Register(typeof(IValidate<>), typeof(IValidate<>).Assembly);

Sometimes you’ll find that many implementations of the given generic interface are no-ops or need the same standard implementation. The IValidate<T> is a good example. It is very likely that not all entities will need validation but your solution would like to treat all entities the same and not need to know whether any particular type has validation or not (having to write a specific empty validation for each type would be a horrible task). In a situation such as this you would ideally like to use the registration as described above, and have some way to fallback to some default implementation when no explicit registration exist for a given type. Such a default implementation could look like this:

// Implementation of the Null Object pattern.
public sealed class NullValidator<T> : IValidate<T> {
 public ValidationResults Validate(T instance) => ValidationResults.Valid;
}

We could configure the container to use this NullValidator<T> for any entity that does not need validation:

container.Register<IValidate<OrderLine>, NullValidator<OrderLine>>();
container.Register<IValidate<Address>, NullValidator<Address>>();
container.Register<IValidate<UploadImage>, NullValidator<UploadImage>>();
container.Register<IValidate<Mothership>, NullValidator<Mothership>>();
// and the list goes on...

This repeated registration is, of course, not very practical. You might be tempted to again fix this as follows:

container.Register(typeof(IValidate<>), typeof(NullValidator<>));

This will, however, not work because this registration will try to map any closed IValidate<T> abstraction to the NullValidator<T> implementation, but other registrations (such as ProductValidator and OrderValidator) already exist. What you need here is to make NullValidator<T> a fallback registration and Simple Injector allows this using the RegisterConditional method overloads:

container.RegisterConditional(
 typeof(IValidate<>),
 typeof(NullValidator<>),
 c => !c.Handled);

The result of this registration is exactly as you would have expected to see from the individual registrations above. Each request for IValidate<Department>, for example, will return a NullValidator<Department> instance each time. The RegisterConditional is supplied with a predicate. In this case the predicate checks whether there already is a different registration that handles the requested service type. In that case the predicate returns false and the registration is not applied.

This predicate can also be used to apply types conditionally based on a number of contextual arguments. Here’s an example:

container.RegisterConditional(
 typeof(IValidator<>),
 typeof(LeftValidator<>),
 c => c.ServiceType.GetGenericArguments().Single().Namespace.Contains("Left"));

container.RegisterConditional(
 typeof(IValidator<>),
 typeof(RightValidator<>),
 c => c.ServiceType.GetGenericArguments().Single().Namespace.Contains("Right"));

Simple Injector protects you from defining invalid registrations by ensuring that given the registrations do not overlap. Building on the last code snippet, imagine accidentally defining a type in the namespace “MyCompany.LeftRight”. In this case both open-generic implementations would apply, but Simple Injector will never silently pick one. It will throw an exception instead.

As discussed before, the PredicateContext.Handled property can be used to implement a fallback mechanism. A more complex example is given below:

container.RegisterConditional(
 typeof(IRepository<>),
 typeof(ReadOnlyRepository<>),
 c => typeof(IReadOnlyEntity).IsAssignableFrom(
 c.ServiceType.GetGenericArguments()[0]));

container.RegisterConditional(
 typeof(IRepository<>),
 typeof(ReadWriteRepository<>),
 c => !c.Handled);

In the case above you tell Simple Injector to only apply the ReadOnlyRepository<T> registration in case the given T implements IReadOnlyEntity. Although applying the predicate can be useful, in this particular case it’s better to apply a generic-type constraint to ReadOnlyRepository<T>. Simple Injector will automatically apply the registered type conditionally based on it generic-type constraints. So if you apply the generic-type constraint to the ReadOnlyRepository<T>, you can remove the predicate:

class ReadOnlyRepository<T> : IRepository<T> where T : IReadOnlyEntity { }

container.Register(
 typeof(IRepository<>),
 typeof(ReadOnlyRepository<>));

container.RegisterConditional(
 typeof(IRepository<>),
 typeof(ReadWriteRepository<>),
 c => !c.Handled);

The final option in Simple Injector is to supply the Register or RegisterConditional methods with a partially-closed generic type:

// SomeValidator<List<T>>
var partiallyClosedType = typeof(SomeValidator<>).MakeGenericType(typeof(List<>));
container.Register(typeof(IValidator<>), partiallyClosedType);

The type SomeValidator<List<T>> is called partially-closed, since although its generic-type argument has been filled in with a type, it still contains a generic-type argument. Simple Injector will be able to apply these constraints, just as it handles any other generic-type constraints.

Mixing collections of open-generic and non-generic components

The Register overload that takes in a list of assemblies only selects non-generic implementations of the given open-generic type. Open-generic implementations are skipped, because they often need special attention.

To register collections that contain both non-generic and open-generic components, a Collection.Register overload is available that accept a list of Type instances. For instance:

container.Collection.Register(typeof(IValidator<>), new[]
{
 typeof(DataAnnotationsValidator<>), // open generic
 typeof(CustomerValidator), // implements IValidator<Customer>
 typeof(GoldCustomerValidator), // implements IValidator<Customer>
 typeof(EmployeeValidator), // implements IValidator<Employee>
 typeof(OrderValidator) // implements IValidator<Order>
});

In the previous example a set of IValidator<T> implementations is supplied to the Collection.Register overload. This list contains one generic implementation, namely DataAnnotationsValidator<T>. This leads to a registration that is equivalent to the following manual registration:

container.Collection.Register<IValidator<Customer>>(
 typeof(DataAnnotationsValidator<Customer>),
 typeof(CustomerValidator),
 typeof(GoldCustomerValidator));

container.Collection.Register<IValidator<Employee>>(
 typeof(DataAnnotationsValidator<Employee>),
 typeof(EmployeeValidator));

container.Collection.Register<IValidator<Order>>(
 typeof(DataAnnotationsValidator<Order>),
 typeof(OrderValidator));

In other words, the supplied non-generic types are grouped by their closed IValidator<T> interface and the DataAnnotationsValidator<T> is applied to every group. This leads to three separate IEnumerable<IValidator<T>> registrations. One for each closed-generic IValidator<T> type.

Note: Collection.Register is guaranteed to preserve the order of the types that you supply.

But besides these three IEnumerable<IValidator<T>> registrations, an invisible fourth registration is made. This is a registration that hooks onto the unregistered type resolution event and this will ensure that any time an IEnumerable<IValidator<T>> for a T that is anything other than Customer, Employee and Order, an IEnumerable<IValidator<T>> is returned that contains the closed-generic versions of the supplied open-generic types—DataAnnotationsValidator<T> in the given example.

Note: This will work equally well when the open-generic types contain type constraints. In that case those types will be applied conditionally to the collections based on their generic-type constraints.

In most cases, however, manually supplying the Collection.Register with a list of types leads to hard-to-maintain configurations, because the registration needs to be changed for each new validator you add to the system. Instead, you can make use of one of the Collection.Register overloads that accepts a list of assemblies and append the open-generic type separately:

container.Collection.Append(typeof(IValidator<>), typeof(DataAnnotationsValidator<>));

container.Collection.Register(typeof(IValidator<>), typeof(IValidator<>).Assembly);

Warning: This Collection.Register overload will request all the types from the supplied Assembly instances. The CLR however does not give any guarantees about the order in which these types are returned. Don’t be surprised if the order of these types in the collection change after a recompile or even a mere application restart. In case strict ordering is required, use the GetTypesToRegister method (as explained below) and order types manually.

Alternatively, we can make use of the Container’s GetTypesToRegister to find the types for us:

var typesToRegister = container.GetTypesToRegister(
 serviceType: typeof(IValidator<>),
 assemblies: new[] { typeof(IValidator<>).Assembly) },
 options: new TypesToRegisterOptions {
 IncludeGenericTypeDefinitions = true,
 IncludeComposites = false,
 });

container.Collection.Register(typeof(IValidator<>), typesToRegister);

The Register and Collection.Register overloads that accept a list of assemblies use this GetTypesToRegister method internally as well. Each, however, use their own TypesToRegisterOptions configuration.

Note: Collections in Simple Injector behave as streams. Please see the section about collection types for more information.

Unregistered type resolution

Unregistered-type resolution is the ability to get notified by the container when a type that is currently unregistered in the container, is requested for the first time. This gives the user (or extension point) the chance of registering that type. Simple Injector supports this scenario with the ResolveUnregisteredType#1 event. Unregistered type resolution enables many advanced scenarios.

For more information about how to use this event, please take a look at the ResolveUnregisteredType event documentation#2 in the reference library#3.

Context-based injection

Context-based injection is the ability to inject a particular dependency based on the context it lives in (or change the implementation based on the type it is injected into). Simple Injector contains the RegisterConditional method overloads that enable context-based injection.

Note: In many cases context-based injection is not the best solution, and the design should be reevaluated. In some narrow cases however it can make sense.

One of the simplest use cases for RegisterConditional is to select an implementation depending on the consumer a dependency is injected into. Take a look at the following registrations for instance:

container.RegisterConditional<ILogger, NullLogger>(
 c => c.Consumer.ImplementationType == typeof(HomeController));
container.RegisterConditional<ILogger, FileLogger>(
 c => c.Consumer.ImplementationType == typeof(UsersController));
container.RegisterConditional<ILogger, DatabaseLogger>(c => !c.Handled);

Here you register three implementations, namely NullLogger, FileLogger and DatabaseLogger, all of which implement ILogger. The registrations are made using a predicate (lambda) describing for which condition they hold. The NullLogger will only be injected into the HomeController and the FileLogger will only be injected into the UsersController. The DatabaseLogger on the other hand is configured as fallback registration and will be injected in all other consumers.

Simple Injector will process conditional registrations in the order in which they are made. This means that fallback registrations, such as for the previous DatabaseLogger, should be made last. Simple Injector will always call the predicates of all registrations to ensure no overlapping registrations are made. In case there are multiple conditional registrations that can be applied, Simple Injector will throw an exception.

Note: The predicates are only used during object-graph compilation and the predicate’s result is burned in the structure of returned object graph. For a requested type, the exact same graph will be created on every subsequent call. This disallows changing the graph based on runtime conditions.

A very common scenario is to base the type of the injected dependency on the type of the consumer. Take for instance the following ILogger interface with a generic Logger<T> class that needs to be injected into several consumers.

public interface ILogger { }

public class Logger<T> : ILogger { }

public class Consumer1
{
 public Consumer1(ILogger logger) { }
}

public class Consumer2
{
 public Consumer2(ILogger logger) { }
}

In this case you want to inject a Logger<Consumer1> into Consumer1 and a Logger<Consumer2> into Consumer2. By using the RegisterConditional overload that accepts a implementation type factory delegate, you can accomplish this as follows:

container.RegisterConditional(
 typeof(ILogger),
 c => typeof(Logger<>).MakeGenericType(c.Consumer.ImplementationType),
 Lifestyle.Singleton,
 c => true);

In the previous code snippet you supply the RegisterConditional method with a lambda presenting a Func<TypeFactoryContext, Type> delegate that allows building the exact implementation type based on contextual information. In this case you use the implementation type of the consuming component to build the correct closed Logger<T> type. You also supply a predicate, but in this case you make the registration unconditional by returning true from the predicate, meaning that this is the only registration for ILogger.

Note: Although building a generic type using Type.MakeGenericType is relatively slow, the call to the Func<TypeFactoryContext, Type> delegate itself has a one-time cost. The factory delegate will only be called a finite number of times. After an object graph has been built, the delegate will not be called again when that same object graph is resolved.

Note: Even though the use of a generic Logger<T> is a common design (with log4net as the grand godfather of this design), doesn’t always make it a good design. The need for having the logger contain information about its parent type, might indicate design problems. If you’re doing this, please take a look at this Stackoverflow answer#4. It talks about logging in conjunction with the SOLID design principles.

Making contextual registrations based on the parent’s metadata

Apart from making the conditional registration based on the consumer’s type, other metadata can be used to make the decision of whether to inject the dependency or not. For instance, Simple Injector provides the predicate, supplied by you to the RegisterConditional method, with information about the member or parameter that the dependency will be injected into—this is called the injection target. This allows you check the target’s name or its attributes and make a decision based on that metadata. Take the following example, for instance:

public class ShipmentRepository : IShipmentRepository
{
 private readonly IDbContextProvider productsContextProvider;
 private readonly IDbContextProvider customersContextProvider;

 public ProductRepository(
 IDbContextProvider productsContextProvider,
 IDbContextProvider customersContextProvider)
 {
 this.productsContextProvider = productsContextProvider;
 this.customersContextProvider = customersContextProvider;
 }
}

The previous ShipmentRepository contains two dependencies, both of type IDbContextProvider. As a convention, the ShipmentRepository prefixes the parameter names with either “products” or “customers” and this allows you to make the registrations conditionally:

container.RegisterConditional<IDbContextProvider, ProductsContextProvider>(
 c => c.Consumer.Target.Name.StartsWith("products"));

container.RegisterConditional<IDbContextProvider, CustomersContextProvider>(
 c => c.Consumer.Target.Name.StartsWith("customers"));

In this example, the name of the consumer’s injection target (the constructor parameter) is used to determine whether the dependency should be injected or not.

Note: Do note that in the previous example, the ProductsContextProvider and CustomersContextProvider implementations likely violate the Liskov Substitution Principle. In this case, a better solution is to give each implementation its own abstraction (e.g. IProductsContextProvider and ICustomersContextProvider.

Making contextual registrations based on the parent’s parent

As shown in the previous examples, Simple Injector allows looking at the dependency’s direct consumer to determine whether or not the dependency should be injected, or that Simple Injector should try the next conditional registration on the consumer. This ‘looking up’ the dependency graph, however, is limited to looking at the dependency’s direct consumer. This limitation is deliberate. Making a decision based on the parent’s parent can lead to all sorts of complications and subtle bugs.

There are several ways to work around this seeming limitation in Simple Injector. The first thing you should do, however, is take a step back and see whether or not you can simplify your design, as these kinds of requirements often (but not always) come from design inefficiencies. One such issue is Liskov Substitution Principle#5 (LSP) violations. From this perspective, it’s good to ask yourself the question: “would my consumer break when it gets injected with a dependency for another consumer?” If the answer is “yes,” you are likely violating the LSP and you should first and foremost try to fix that problem first. When fixed, you’ll likely see your configuration problems go away as well.

If the LSP is not violated, and changing the design is not feasible, a common solution is to make the intermediate consumer(s) generic. This is discussed in more detail in this Stack Overflow Q/A#6.

Property injection

Simple Injector does not out-of-the-box inject any properties into types that get resolved by the container. In general there are two ways of doing property injection, and both are not enabled by default for reasons explained below.

Implicit property injection

Some containers implicitly inject public writable properties by default for any instance you resolve. They do this by mapping those properties to configured types. When no such registration exists, or when the property doesn’t have a public setter, the property will be skipped. Simple Injector does not do implicit property injection, and for good reason. We think that implicit property injection is simply too… implicit :-). Silently skipping properties that can’t be mapped can lead to a DI configuration that can’t be easily verified and can therefore result in an application that fails at runtime instead of failing when the container is verified.

Explicit property injection

We strongly feel that explicit property injection is a much better way to go. With explicit property injection the container is forced to inject a property and the process will fail immediately when a property can’t be mapped or injected. Some containers allow explicit property injection by allowing properties to be marked with attributes that are defined by the DI library. Problem with this is that this forces the application to take a dependency on the library, which is something that should be prevented.

Because Simple Injector does not encourage its users to take a dependency on the container (except for the startup path of course), Simple Injector does not contain any attributes that allow explicit property injection and it can, therefore, not explicitly inject properties out-of-the-box.

One major downside of property injection is that it caused Temporal Coupling#7. The use of property injection should, therefore, be very exceptional and in general constructor injection should be used in the majority of cases. If a constructor gets too many parameters (a code smell called constructor over-injection), it is an indication of a violation of the Single Responsibility Principle#8 (SRP). SRP violations often lead to maintainability issues. So instead of patching constructor over-injection with property injection, the root cause should be analyzed and the type should be refactored, probably with Facade Services#9. Another common reason to use properties is because those dependencies are optional. Instead of using optional property dependencies, best practice is to inject empty implementations (a.k.a. Null Object pattern#10) into the constructor.

Enabling property injection

Simple Injector contains two ways to enable property injection. First of all the RegisterInitializer<T> method can be used to inject properties (especially configuration values) on a per-type basis. Take for instance the following code snippet:

container.RegisterInitializer<HandlerBase>(handlerToInitialize => {
 handlerToInitialize.ExecuteAsynchronously = true;
});

In the previous example an Action<T> delegate is registered that will be called every time the container creates a type that inherits from HandlerBase. In this case, the handler will set a configuration value on that class.

Note: although this method can also be used injecting services, please note that the Diagnostic Services will be unable to see and analyze that dependency.

IPropertySelectionBehavior

The second way to inject properties is by implementing a custom IPropertySelectionBehavior. The property selection behavior is a general extension point provided by the container, to override the library’s default behavior (which is to not inject properties). The following example enables explicit property injection using attributes, using the ImportAttribute from the System.ComponentModel.Composition.dll:

using System;
using System.ComponentModel.Composition;
using System.Linq;
using System.Reflection;
using SimpleInjector.Advanced;

class ImportPropertySelectionBehavior : IPropertySelectionBehavior
{
 public bool SelectProperty(Type implementationType, PropertyInfo prop) =>
 prop.GetCustomAttributes(typeof(ImportAttribute)).Any();
}

The previous class can be registered as follows:

var container = new Container();
container.Options.PropertySelectionBehavior = new ImportPropertySelectionBehavior();

This enables explicit property injection on all properties that are marked with the [Import] attribute and an exception will be thrown when the property cannot be injected for whatever reason.

Tip: Properties injected by the container through the IPropertySelectionBehavior will be analyzed by the Diagnostic Services.

Note: The IPropertySelectionBehavior extension mechanism can also be used to implement implicit property injection. There’s an example of this#11 in the source code. Doing so, however, is not encouraged because of the reasons given above.

Covariance and Contravariance

Since version 4.0 of the .NET framework, the type system allows Covariance and Contravariance in Generics#12 (especially interfaces and delegates). This allows, for instance, to use a IEnumerable<string> as an IEnumerable<object> (covariance), or to use an Action<object> as an Action<string> (contravariance).

In some circumstances, the application design can benefit from the use of covariance and contravariance (or variance for short) and it would be beneficial if the container returned services that were ‘compatible’ with the requested service, even when the requested service type itself is not explicitly registered. To stick with the previous example, the container could return an IEnumerable<string> even when an IEnumerable<object> is requested.

When resolving a collection, Simple Injector will resolve all assignable (variant) implementations of the requested service type as part of the requested collection.

Take a look at the following application design around the IEventHandler<in TEvent> interface:

public interface IEventHandler<in TEvent>
{
 void Handle(TEvent e);
}

public class CustomerMovedEvent
{
 public readonly Guid CustomerId;
 public CustomerMovedEvent(Guid customerId)
 {
 this.CustomerId = customerId;
 }
}

public class CustomerMovedAbroadEvent : CustomerMovedEvent
{
 public CustomerMovedEvent(Guid customerId) : base(customerId) { }
}

public class SendFlowersToMovedCustomer : IEventHandler<CustomerMovedEvent>
{
 public void Handle(CustomerMovedEvent e) { ... }
}

public class WarnShippingDepartmentAboutMove : IEventHandler<CustomerMovedAbroadEvent>
{
 public void Handle(CustomerMovedAbroadEvent e) { ... }
}

The design contains two event classes CustomerMovedEvent and CustomerMovedAbroadEvent (where CustomerMovedAbroadEvent inherits from CustomerMovedEvent) and two concrete event handlers SendFlowersToMovedCustomer and WarnShippingDepartmentAboutMove. These classes can be registered using the following registration:

// Configuration
container.Collection.Register(
 typeof(IEventHandler<>),
 typeof(IEventHandler<>).Assembly);

// Usage
var handlers = container.GetAllInstances<IEventHandler<CustomerMovedAbroadEvent>>();

foreach (var handler in handlers)
{
 Console.WriteLine(handler.GetType().Name);
}

With the given classes, the code snippet above will give the following output:

SendFlowersToMovedCustomer
WarnShippingDepartmentAboutMove

Although we requested all registrations for IEventHandler<CustomerMovedAbroadEvent>, the container returned both IEventHandler<CustomerMovedEvent> and IEventHandler<CustomerMovedAbroadEvent> implementations. Simple Injector did this because the IEventHandler<in TEvent> interface was defined with the *in* keyword, which allows IEventHandler<CustomerMovedEvent> implementations to be part of IEventHandler<CustomerMovedAbroadEvent> collections—because CustomerMovedAbroadEvent inherits from CustomerMovedEvent, SendFlowerToMovedCustomer can also process CustomerMovedAbroadEvent events.

Tip: If you don’t want Simple Injector to resolve variant registrations remove the in and out keywords from the interface definition. i.e. the in and out keywords are the trigger for Simple Injector to apply variance.

Tip: Don’t mark generic-type arguments with in and out keywords by default, even if Resharper tells you to. Most of the generic abstractions you define will always have exactly one non-generic implementation but marking the interface with in and out keywords communicates that variance is expected and there could, therefore, be multiple applicable implementations. This will confuse the reader of your code. Only apply these keywords if variance is actually required. You should typically not use variance when defining ICommandHandler<TCommand> or IQueryHandler<TQuery, TResult>, but it might make sense for IEventHandler<in TEvent> and IValidator<in T>.

Note: Simple Injector only resolves variant implementations for collections that are registered using the Collection.Register overloads. In case you are resolving a single instance using GetInstance<T> then Simple Injector will not return an assignable type, even if the exact type is not registered, because this could easily lead to ambiguity—Simple Injector will not know which implementation to select.

Registering plugins dynamically

Applications with a plugin architecture often allow plugin assemblies to be dropped in a special folder and to be picked up by the application, without the need of a recompile. Although Simple Injector has no out-of-the-box support for this, registering plugins from dynamically loaded assemblies can be implemented in a few lines of code. Here is an example:

string pluginDirectory =
 Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Plugins");

var pluginAssemblies =
 from file in new DirectoryInfo(pluginDirectory).GetFiles()
 where file.Extension.ToLower() == ".dll"
 select Assembly.Load(AssemblyName.GetAssemblyName(file.FullName));

container.Collection.Register<IPlugin>(pluginAssemblies);

The given example makes use of an IPlugin interface that is known to the application, and probably located in a shared assembly. The dynamically loaded plugin .dll files can contain multiple classes that implement IPlugin, and all concrete, non-generic types that implement IPlugin (and are neither a composite nor decorator) will be registered using the Collection.Register method and can get resolved using the default auto-wiring behavior of the container, meaning that the plugin must have a single public constructor and all constructor arguments must be resolvable by the container. The plugins can get resolved using container.GetAllInstances<IPlugin>() or by adding an IEnumerable<IPlugin> argument to a constructor.

Note: Collections in Simple Injector behave as streams. Please see the section about collection types for more information.

Footnotes

	#1

	https://simpleinjector.org/ReferenceLibrary/?topic=html/E_SimpleInjector_Container_ResolveUnregisteredType.htm

	#2

	https://simpleinjector.org/ReferenceLibrary/?topic=html/E_SimpleInjector_Container_ResolveUnregisteredType.htm

	#3

	https://simpleinjector.org/ReferenceLibrary/

	#4

	https://stackoverflow.com/a/9915056/264697

	#5

	https://en.wikipedia.org/wiki/Liskov_substitution_principle

	#6

	https://stackoverflow.com/questions/53815493/inject-dependency-dynamically-based-on-call-chain-using-simple-injector

	#7

	https://blog.ploeh.dk/2011/05/24/DesignSmellTemporalCoupling/

	#8

	https://en.wikipedia.org/wiki/Single_responsibility_principle

	#9

	https://blog.ploeh.dk/2010/02/02/RefactoringtoAggregateServices/

	#10

	https://en.wikipedia.org/wiki/Null_Object_pattern

	#11

	https://github.com/simpleinjector/SimpleInjector/blob/master/src/SimpleInjector.CodeSamples/ImplicitPropertyInjectionExtensions.cs

	#12

	https://msdn.microsoft.com/en-us/library/dd799517.aspx

Aspect-Oriented Programming

The SOLID#1 principles give us important guidance when it comes to writing maintainable software. The ‘O’ of the ‘SOLID’ acronym stands for the Open/closed Principle#2 which states that classes should be open for extension, but closed for modification. Designing systems around the Open/closed principle means that new behavior can be plugged into the system, without the need to change any existing parts, making the chance of breaking existing code much smaller and prevent having to make sweeping changes throughout the code base. This way of working is often referred to as aspect-oriented programming.

Aspect-oriented programming (AOP) is a programming paradigm that aims to increase modularity by allowing the separation of cross-cutting concerns. It allows new behavior to be plugged in or changed, without having to change or even recompile existing code. Simple Injector’s main support for AOP is by the use of decorators. Besides decorators, one can also plugin interception using a dynamic proxy framework.

This chapter discusses the following subjects:

	Decoration

	Interception using Dynamic Proxies

Decoration

The best way to add new functionality (such as cross-cutting concerns#3) to classes is by the use of the decorator pattern#4. The decorator pattern can be used to extend (decorate) the functionality of a certain object at run-time. Especially when using generic interfaces, the concept of decorators gets really powerful. Take for instance the examples given in the Registration of open generic types section or for instance the use of an generic ICommandHandler<TCommand> interface.

Tip: This article#5 describes an architecture based on the use of the ICommandHandler<TCommand> interface.

Take the plausible scenario where you want to validate all commands that get executed by an ICommandHandler<TCommand> implementation. The Open/Closed principle states that you want to do this without having to alter each and every implementation. You can achieve this using a (single) decorator:

public class ValidationCommandHandlerDecorator<TCommand> : ICommandHandler<TCommand>
{
 private readonly IValidator validator;
 private readonly ICommandHandler<TCommand> decoratee;

 public ValidationCommandHandlerDecorator(
 IValidator validator, ICommandHandler<TCommand> decoratee)
 {
 this.validator = validator;
 this.decoratee = decoratee;
 }

 void ICommandHandler<TCommand>.Handle(TCommand command)
 {
 // validate the supplied command (throws when invalid).
 this.validator.ValidateObject(command);

 // forward the (valid) command to the real command handler.
 this.decoratee.Handle(command);
 }
}

The ValidationCommandHandlerDecorator<TCommand> class is an implementation of the ICommandHandler<TCommand> interface, but it also wraps / decorates an ICommandHandler<TCommand> instance. Instead of injecting the real implementation directly into a consumer, you can (let Simple Injector) inject a validator decorator that wraps the real implementation.

The ValidationCommandHandlerDecorator<TCommand> depends on an IValidator interface. An implementation that used Microsoft Data Annotations might look like this:

using System.ComponentModel.DataAnnotations;

public class DataAnnotationsValidator : IValidator
{
 void IValidator.ValidateObject(object instance)
 {
 var context = new ValidationContext(instance, null, null);

 // Throws an exception when instance is invalid.
 Validator.ValidateObject(instance, context, validateAllProperties: true);
 }
}

The implementations of the ICommandHandler<T> interface can be registered using the Register method overload that takes in a list of assemblies:

container.Register(typeof(ICommandHandler<>), typeof(ICommandHandler<>).Assembly);

By using the following method, you can wrap the ValidationCommandHandlerDecorator<TCommand> around each and every ICommandHandler<TCommand> implementation:

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(ValidationCommandHandlerDecorator<>));

Multiple decorators can be wrapped by calling the RegisterDecorator method multiple times, as the following registration shows:

container.Register(typeof(ICommandHandler<>), typeof(ICommandHandler<>).Assembly);

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(TransactionCommandHandlerDecorator<>));

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(DeadlockRetryCommandHandlerDecorator<>));

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(ValidationCommandHandlerDecorator<>));

The decorators are applied in the order in which they are registered, which means that the first decorator (TransactionCommandHandlerDecorator<T> in this case) wraps the real instance, the second decorator (DeadlockRetryCommandHandlerDecorator<T> in this case) wraps the first decorator, and so on.

Tip: Are the previous three decorators applied in the correct order? This GitHub issue#6 gives more insights into this.

Applying Decorators conditionally

There’s an overload of the RegisterDecorator available that allows you to supply a predicate to determine whether that decorator should be applied to a specific service type. Using a given context you can determine whether the decorator should be applied. Here is an example:

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(AccessValidationCommandHandlerDecorator<>),
 context => typeof(IAccessRestricted).IsAssignableFrom(
 context.ServiceType.GetGenericArguments()[0]));

The given context contains several properties that allows you to analyze whether a decorator should be applied to a given service type, such as the current closed-generic service type (using the ServiceType property) and the concrete type that will be created (using the ImplementationType property). The predicate will (under normal circumstances) be called only once per closed-generic type, so there is no performance penalty for using it.

Applying Decorators conditionally using type constraints

The previous example shows the conditional registration of the AccessValidationCommandHandlerDecorator<T> decorator. It is applied in case the closed TCommand type (of ICommandHandler<TCommand>) implements the IAccessRestricted interface.

Simple Injector will automatically apply decorators conditionally based on defined generic type constraints#7. You can, therefore, define the AccessValidationCommandHandlerDecorator<T> with a generic type constraint:

class AccessValidationCommandHandlerDecorator<TCommand> : ICommandHandler<TCommand>
 where TCommand : IAccessRestricted
{
 private readonly ICommandHandler<TCommand> decoratee;

 public AccessValidationCommandHandlerDecorator(ICommandHandler<TCommand> decoratee)
 {
 this.decoratee = decoratee;
 }

 void ICommandHandler<TCommand>.Handle(TCommand command)
 {
 // Do access validation
 this.decoratee.Handle(command);
 }
}

Because Simple Injector natively understands generic type constraints, you can reduce the previous registration to the following:

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(AccessValidationCommandHandlerDecorator<>));

The use of generic type constraints has many advantages:

	It allows constraints to be specified exactly once, in the place it often makes most obvious, i.e. the decorator itself.

	It allows constraints to be specified in the syntax you are used to the most, i.e. C#.

	It allows constraints to be specified in a very succinct manner compared to the verbose, error prone and often hard to read syntax of the reflection API (the previous examples already shown this).

	It allows decorator to be simplified, because of the added compile time support.

Obviously there are cases where these conditions can’t or shouldn’t be defined using generic type constraints. The following code example shows a registration that can’t be expressed using generic type constraints:

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(AccessValidationCommandHandlerDecorator<>),
 c => c.ImplementationType.GetCustomAttributes(typeof(AccessAttribute)).Any());

This registration applies the decorator conditionally based on an attribute on the (initially) decorated handler type. There is obviously no way to express this using generic type constraints, so you will have to fallback to the predicate syntax.

Decorators with Func<T> decoratee factories

There are certain scenarios where it is necessary to postpone the building of part of an object graph. For instance when a service needs to control the lifetime of a dependency, needs multiple instances, when instances need to be executed on a different thread, or when instances need to be created within a certain scope or context (e.g. security).

You can easily delay the building of part of the graph by depending on a factory; the factory allows building that part of the object graph to be postponed until the moment the type is actually required. However, when working with decorators, injecting a factory to postpone the creation of the decorated instance will not work. This is best demonstrated with an example.

Take for instance an AsyncCommandHandlerDecorator<T> that executes a command handler on a different thread. You could let the AsyncCommandHandlerDecorator<T> depend on a CommandHandlerFactory<T>, and let this factory call back into the container to retrieve a new ICommandHandler<T> but this would fail, because requesting an ICommandHandler<T> would again wrap the new instance with a AsyncCommandHandlerDecorator<T> and you’d end up recursively creating the same instance type again and again resulting in an endless loop.

This particular scenario is really hard to solve without library support and as such Simple Injector allows injecting a Func<T> delegate into registered decorators. This delegate functions as a factory for the creation of the decorated instance and avoids the recursive decoration explained above.

Taking the same AsyncCommandHandlerDecorator<T> as an example, it could be implemented as follows:

public class AsyncCommandHandlerDecorator<T> : ICommandHandler<T>
{
 private readonly Func<ICommandHandler<T>> decorateeFactory;

 public AsyncCommandHandlerDecorator(Func<ICommandHandler<T>> decorateeFactory)
 {
 this.decorateeFactory = decorateeFactory;
 }

 public void Handle(T command)
 {
 // Execute on different thread.
 ThreadPool.QueueUserWorkItem(state =>
 {
 try
 {
 // Create new handler in this thread.
 ICommandHandler<T> handler = this.decorateeFactory.Invoke();
 handler.Handle(command);
 }
 catch (Exception ex)
 {
 // log the exception
 }
 });
 }
}

This special decorator is registered just as any other decorator:

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(AsyncCommandHandlerDecorator<>),
 c => c.ImplementationType.Name.StartsWith("Async"));

The AsyncCommandHandlerDecorator<T> however, has only singleton dependencies (the Func<T> is a singleton) and the Func<ICommandHandler<T>> factory always calls back into the container to register a decorated instance conforming the decoratee’s lifestyle, each time it’s called. If, for instance, the decoratee is registered as transient, each call to the factory will result in a new instance. It is, therefore, safe to register this decorator as a singleton:

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(AsyncCommandHandlerDecorator<>),
 Lifestyle.Singleton,
 c => c.ImplementationType.Name.StartsWith("Async"));

When mixing this decorator with other (synchronous) decorators, you’ll get an extremely powerful and pluggable system:

container.Register(typeof(ICommandHandler<>), typeof(ICommandHandler<>).Assembly);

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(TransactionCommandHandlerDecorator<>));

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(DeadlockRetryCommandHandlerDecorator<>));

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(AsyncCommandHandlerDecorator<>),
 Lifestyle.Singleton,
 c => c.ImplementationType.Name.StartsWith("Async"));

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(ValidationCommandHandlerDecorator<>));

This configuration has an interesting mix of decorator registrations.

	The registration of the AsyncCommandHandlerDecorator<T> allows (a subset of) command handlers to be executed in the background (while any command handler with a name that does not start with ‘Async’ will execute synchronously)

	Prior to this point all commands are validated synchronously (to allow communicating validation errors to the caller)

	All handlers (sync and async) are executed in a transaction and the operation is retried when the database rolled back because of a deadlock

Warning: Please note that the previous example is just meant for educational purposes. In practice, you don’t want your commands to be processed this way, because it could lead to message loss. Instead you want to use a durable queue.

Another useful application for Func<T> decoratee factories is when a command needs to be executed in an isolated fashion, e.g. to prevent sharing the unit of work with the request that triggered the execution of that command. This can be achieved by creating a proxy that starts a new thread-specific scope, as follows:

using SimpleInjector.Lifestyles;

public class ThreadScopedCommandHandlerProxy<T> : ICommandHandler<T>
{
 private readonly Container container;
 private readonly Func<ICommandHandler<T>> decorateeFactory;

 public ThreadScopedCommandHandlerProxy(
 Container container, Func<ICommandHandler<T>> decorateeFactory)
 {
 this.container = container;
 this.decorateeFactory = decorateeFactory;
 }

 public void Handle(T command)
 {
 // Start a new scope.
 using (ThreadScopedLifestyle.BeginScope(container))
 {
 // Create the decorateeFactory within the scope.
 ICommandHandler<T> handler = this.decorateeFactory.Invoke();
 handler.Handle(command);
 };
 }
}

This proxy class starts a new thread scoped lifestyle and resolves the decoratee within that new scope using the factory. The use of the factory ensures that the decoratee is resolved according to its lifestyle, independent of the lifestyle of our proxy class. The proxy can be registered as follows:

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(ThreadScopedCommandHandlerProxy<>),
 Lifestyle.Singleton);

Note: Because the ThreadScopedCommandHandlerProxy<T> only depends on singletons (both the Container and the Func<ICommandHandler<T>> are singletons), it too can safely be registered as singleton.

Because a typical application will not use the thread-scoped lifestyle, but would prefer a scope specific to the application type, a special hybrid lifestyle needs to be defined that allows object graphs to be resolved in this mixed-request scenario:

container.Options.DefaultScopedLifestyle = Lifestyle.CreateHybrid(
 defaultLifestyle = new ThreadScopedLifestyle(),
 fallbackLifestyle: new WebRequestLifestyle());

container.Register<IUnitOfWork, DbUnitOfWork>(Lifestyle.Scoped);

If you run (part of) your commands on a background thread and also use registrations with a scoped lifestyle you will have a use both the ThreadScopedCommandHandlerProxy<T> and AsyncCommandHandlerDecorator<T> together which can be seen in the following configuration:

container.Options.DefaultScopedLifestyle = Lifestyle.CreateHybrid(
 defaultLifestyle = new ThreadScopedLifestyle(),
 fallbackLifestyle: new WebRequestLifestyle());

container.Options.DefaultScopedLifestyle = scopedLifestyle;

container.Register<IUnitOfWork, DbUnitOfWork>(Lifestyle.Scoped);
container.Register<IRepository<User>, UserRepository>(Lifestyle.Scoped);

container.Register(typeof(ICommandHandler<>), typeof(ICommandHandler<>).Assembly);

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(ThreadScopedCommandHandlerProxy<>),
 Lifestyle.Singleton);

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(AsyncCommandHandlerDecorator<>),
 Lifestyle.Singleton,
 c => c.ImplementationType.Name.StartsWith("Async"));

With this configuration all commands are executed in an isolated context and some are also executed on a background thread.

Decorated collections

When registering a decorator, Simple Injector will automatically decorate any collection with elements of that service type:

container.Collection.Register<IEventHandler<CustomerMovedEvent>>(
 typeof(CustomerMovedEventHandler),
 typeof(NotifyStaffWhenCustomerMovedEventHandler));

container.RegisterDecorator(
 typeof(IEventHandler<>),
 typeof(TransactionEventHandlerDecorator<>),
 c => SomeCondition);

The previous registration registers a collection of IEventHandler<CustomerMovedEvent> services. Those services are decorated with a TransactionEventHandlerDecorator<TEvent> when the supplied predicate holds.

Note: Collections in Simple Injector behave as streams. Please see the section about collection types for more information.

For collections of elements that are created by the container (container controlled), the predicate is checked for each element in the collection. For collections of uncontrolled elements (a list of items that is not created by the container), the predicate is checked once for the whole collection. This means that only controlled collections can be partially decorated. Taking the previous example for instance, you could let the CustomerMovedEventHandler be decorated, while leaving the NotifyStaffWhenCustomerMovedEventHandler undecorated (determined by the supplied predicate).

When a collection is uncontrolled, it means that the lifetime of its elements are unknown to the container. The following registration is an example of an uncontrolled collection:

IEnumerable<IEventHandler<CustomerMovedEvent>> handlers =
 new IEventHandler<CustomerMovedEvent>[]
 {
 new CustomerMovedEventHandler(),
 new NotifyStaffWhenCustomerMovedEventHandler(),
 };

container.Collection.Register<IEventHandler<CustomerMovedEvent>>(handlers);

Although this registration contains a list of singletons, the container has no way of knowing this. The collection could easily have been a dynamic (an ever changing) collection. In this case, the container calls the registered predicate once (and supplies the predicate with the IEventHandler<CusotmerMovedEvent> type) and if the predicate returns true, each element in the collection is decorated with a decorator instance.

Warning: In general you should prevent registering uncontrolled collections. The container knows nothing about them, and can’t help you in doing diagnostics. With the lifetime of those items unknown, the container will be unable to wrap a decorator with a lifestyle other than transient. Best practice is to register container-controlled collections which is done by using one of the Collection.Register overloads that take a collection of System.Type instances.

Using contextual information inside decorators

As we shown before, you can apply a decorator conditionally based on a predicate you can supply to the RegisterDecorator overloads:

container.RegisterDecorator(
 typeof(ICommandHandler<>),
 typeof(AsyncCommandHandlerDecorator<>),
 c => c.ImplementationType.Name.StartsWith("Async"));

Sometimes, however, you might want to apply a decorator unconditionally, but let the decorator act at runtime based on this contextual information. You can do this by injecting a DecoratorContext into the decorator’s constructor as can be seem in the following example:

public class TransactionCommandHandlerDecorator<T> : ICommandHandler<T>
{
 private readonly ITransactionBuilder builder;
 private readonly ICommandHandler<T> decoratee;
 private readonly TransactionType transactionType;

 public TransactionCommandHandlerDecorator(
 DecoratorContext decoratorContext,
 ITransactionBuilder builder,
 ICommandHandler<T> decoratee)
 {
 this.builder = builder;
 this.decoratee = decoratee;
 this.transactionType = decoratorContext.ImplementationType
 .GetCustomAttribute<TransactionAttribute>()
 .TransactionType;
 }

 public void Handle(T command)
 {
 using (var ta = this.builder.BeginTransaction(this.transactionType))
 {
 this.decoratee.Handle(command);
 ta.Complete();
 }
 }
}

The previous code snippet shows a decorator that applies a transaction behavior to command handlers. The decorator is injected with the DecoratorContext class which supplies the decorator with contextual information about the other decorators in the chain and the actual implementation type. In this example the decorator expects a TransactionAttribute to be applied to the wrapped command handler implementation and it starts the correct transaction type based on this information. The following code snippet shows a possible command handler implementation:

[Transaction(TransactionType.ReadCommitted)]
public class ShipOrderHandler : ICommandHandler<ShipOrder>
{
 public void Handle(ShipOrder command)
 {
 // Business logic here
 }
}

If the attribute was applied to the command class instead of the command handler, this decorator would been able to gather this information without the use of the DecoratorContext. This would, however, leak implementation details into the command—which type of transaction a handler should run is an implementation detail and is of no concern to the consumers of that command. Placing that attribute on the handler instead of the command is therefore a much more reasonable thing to do.

The decorator would also be able to get the attribute by using the injected decoratee, but this would only work if the decorator would directly wrap the handler. This would make the system quite fragile, as it would break once you start placing other decorator in between this decorator and the handler, which is a likely thing to happen.

Applying decorators conditionally based on consumer

The previous examples showed how to apply a decorator conditionally based on information about its dependencies, such as the decorators that it wraps and the wrapped real implementation. Another option is to make decisions based on the consuming components; the components the decorator is injected into.

Although the RegisterDecorator methods don’t have any built-in support for this, this behavior can be achieved by using the RegisterConditional methods. For instance:

container.RegisterConditional<IMailSender, AsyncMailSenderDecorator>(
 c => c.Consumer.ImplementationType == typeof(UserController));
container.RegisterConditional<IMailSender, BufferedMailSenderDecorator>(
 c => c.Consumer.ImplementationType == typeof(EmailBatchProcessor));

container.RegisterConditional<IMailSender, SmtpMailSender>(c => !c.Handled);

Here you use RegisterConditional to register two decorators. Both decorator will wrap the SmtpMailSender that is registered last. The AsyncMailSenderDecorator is wrapped around the SmtpMailSender in case it is injected into the UserController, while the BufferedMailSenderDecorator is wrapped when injected into the EmailBatchProcessor. Note that the SmtpMailSender is registered as conditional as well, and is registered as fallback registration using !c.Handled. This basically means that in case no other registration applies, that registration is used.

Decorator registration factories

In some advanced scenarios, it can be useful to depend the actual decorator type based on some contextual information. There is a RegisterDecorator overload that accepts a factory delegate that allows building the exact decorator type based on the actual type being decorated.

Take the following registration for instance:

container.RegisterDecorator(
 typeof(IEventHandler<>),
 factoryContext => typeof(LoggingEventHandlerDecorator<,>).MakeGenericType(
 typeof(LoggingEventHandler<,>).GetGenericArguments().First(),
 factoryContext.ImplementationType),
 Lifestyle.Transient,
 predicateContext => true);

In this example you register the LoggingEventHandlerDecorator<TEvent, TLogTarget> decorator for the IEventHandler<TEvent> abstraction. The supplied factory delegate builds up a partially closed generic type by filling in the TLogTarget argument, where the TEvent is left ‘open’. This is done by requesting the first generic type argument (the TEvent) from the open-generic LoggingEventHandler<,> type itself and using the ImplementationType as second argument. This means that when this decorator is wrapped around a type called CustomerMovedEventHandler, the factory method will create the type LoggingEventHandler<TEvent, CustomerMovedEventHandler>. In other words, the second argument is a concrete type (and thus closed), while the first argument is still a blank. When a closed version of IEventHandler<TEvent> is requested later on, Simple Injector will know how to fill in the blank with the correct type for this TEvent argument.

Tip: Simple Injector doesn’t care in which order you define your generic type arguments, nor how you name them—it will be able to figure out the correct type to build any way.

Note: The type factory delegate is typically called once per closed type and the result is burned in the compiled object graph. You can’t use this delegate to make runtime decisions.

Interception using Dynamic Proxies

Interception is the ability to intercept a call from a consumer to a service, and add or change behavior. The decorator pattern#8 describes a form of interception, but when it comes to applying cross-cutting concerns, you might end up writing decorators for many service interfaces, but with the exact same code. If this is happening, it’s time to take a close look at your design. If, for what ever reason, it’s impossible for you to make the required improvements to your design, your second best bet is to explore the possibilities of Dynamic Interception through dynamic proxies.

Warning: Simple Injector has no out-of-the-box support for interception because the use of interception is an indication of a sub-optimal design and we are keen on pushing developers into best practices. Whenever possible, choose to improve your design to make decoration possible.

Using the Interception extensions code snippets, you can add the ability to do dynamic interception with Simple Injector. Using the given code, you can for instance define a MonitoringInterceptor that allows logging the execution time of the called service method:

private class MonitoringInterceptor : IInterceptor
{
 private readonly ILogger logger;

 // Using constructor injection on the interceptor
 public MonitoringInterceptor(ILogger logger)
 {
 this.logger = logger;
 }

 public void Intercept(IInvocation invocation)
 {
 var watch = Stopwatch.StartNew();

 // Calls the decorated instance.
 invocation.Proceed();

 var decoratedType = invocation.InvocationTarget.GetType();

 this.logger.Log(string.Format("{0} executed in {1} ms.",
 decoratedType.Name, watch.ElapsedMiliseconds));
 }
}

This interceptor can be registered to be wrapped around a concrete implementation. Using the given extension methods, this can be done as follows:

container.InterceptWith<MonitoringInterceptor>(type => type == typeof(IUserRepository));

This registration ensures that every time an IUserRepository interface is requested, a proxy is returned that wraps that instance and uses the MonitoringInterceptor to extend the behavior.

The current example doesn’t add much compared to simply using a decorator. When having many interface service types that need to be decorated with the same behavior however, it gets different:

container.InterceptWith<MonitoringInterceptor>(t => t.Name.EndsWith("Repository"));

Note: The Interception extensions code snippets use .NET’s System.Runtime.Remoting.Proxies.RealProxy class to generate interception proxies. The RealProxy only allows to proxy interfaces.

Note: the interfaces in the given Interception extensions code snippets are a simplified version of the Castle Project interception facility. If you need to create lots different interceptors, you might benefit from using the interception abilities of the Castle Project. Also please note that the given snippets use dynamic proxies to do the interception, while Castle uses lightweight code generation (LCG). LCG allows much better performance than the use of dynamic proxies. Please see this stackoverflow q/a#9 for an implementation for Castle Windsor.

Note: Don’t use dynamic interception for intercepting types that all implement the same generic interface, such as ICommandHandler<T> or IValidator<T>. Try using decorator classes instead, as shown in the Decoration section on this page.

Footnotes

	#1

	https://en.wikipedia.org/wiki/SOLID

	#2

	https://en.wikipedia.org/wiki/Open/closed_principle

	#3

	https://en.wikipedia.org/wiki/Cross-cutting_concern

	#4

	https://en.wikipedia.org/wiki/Decorator_pattern

	#5

	https://blogs.cuttingedge.it/steven/posts/2011/meanwhile-on-the-command-side-of-my-architecture/

	#6

	https://github.com/simpleinjector/Documentation/issues/111/

	#7

	https://msdn.microsoft.com/en-us/library/d5x73970.aspx

	#8

	https://en.wikipedia.org/wiki/Decorator_pattern

	#9

	https://stackoverflow.com/questions/24513530/using-simple-injector-with-castle-proxy-interceptor

Extensibility Points

Simple Injector allows much of its default behavior to be changed or extended. This chapter describes the available extension points and shows examples of how to use them. Do note that in most cases we advice developers to stick with the default behavior, because this behavior is based on best practices.

	Overriding Constructor Resolution Behavior

	Property Injection

	Overriding Parameter Injection Behavior

	Resolving Unregistered Types

	Overriding Lifestyle Selection Behavior

	Intercepting the Creation of Types

	Building up external instances

	Interception of Resolved Object Graphs

	Getting notified about the container getting locked

Overriding Constructor Resolution Behavior

Out of the box, Simple Injector only allows the creation of classes that contain a single public constructor. This behavior is chosen deliberately because having multiple constructors is an anti-pattern#1.

There are some exceptional circumstances, though, where you don’t control the amount of public constructors a type has. Code generators for instance, can have this annoying side effect. Earlier versions of the T4MVC#2 template for instance did this.

In these rare cases we need to override the way Simple Injector does its constructor overload resolution. This can be done by creating custom implementation of IConstructorResolutionBehavior. The default behavior can be replaced by setting the Container.Options.ConstructorResolutionBehavior property.

public interface IConstructorResolutionBehavior
{
 ConstructorInfo GetConstructor(Type implementationType);
}

Simple Injector will call into the registered IConstructorResolutionBehavior when the type is registered to allow the IConstructorResolutionBehavior implementation to verify the type. The implementation is called again when the registered type is resolved for the first time.

The following example changes the constructor resolution behavior to always select the constructor with the most parameters (the greediest constructor):

// Custom constructor resolution behavior
public class GreediestConstructorBehavior : IConstructorResolutionBehavior
{
 public ConstructorInfo GetConstructor(Type implementationType) => (
 from ctor in implementationType.GetConstructors()
 orderby ctor.GetParameters().Length descending
 select ctor)
 .First();
}

// Usage
var container = new Container();
container.Options.ConstructorResolutionBehavior = new GreediestConstructorBehavior();

The following bit more advanced example changes the constructor resolution behavior to always select the constructor with the most parameters from the list of constructors with only resolvable parameters:

public class MostResolvableParametersConstructorResolutionBehavior
 : IConstructorResolutionBehavior
{
 private readonly Container container;

 public MostResolvableParametersConstructorResolutionBehavior(Container container)
 {
 this.container = container;
 }

 private bool IsCalledDuringRegistrationPhase => !this.container.IsLocked();

 [DebuggerStepThrough]
 public ConstructorInfo GetConstructor(Type implementationType)
 {
 var constructor = this.GetConstructors(implementationType).FirstOrDefault();
 if (constructor != null) return constructor;
 throw new ActivationException(BuildExceptionMessage(implementationType));
 }

 private IEnumerable<ConstructorInfo> GetConstructors(Type implementation) =>
 from ctor in implementation.GetConstructors()
 let parameters = ctor.GetParameters()
 where this.IsCalledDuringRegistrationPhase
 || implementation.GetConstructors().Length == 1
 || ctor.GetParameters().All(this.CanBeResolved)
 orderby parameters.Length descending
 select ctor;

 private bool CanBeResolved(ParameterInfo parameter) =>
 this.GetInstanceProducerFor(new InjectionConsumerInfo(parameter)) != null;

 private InstanceProducer GetInstanceProducerFor(InjectionConsumerInfo i) =>
 this.container.Options.DependencyInjectionBehavior.GetInstanceProducer(i, false);

 private static string BuildExceptionMessage(Type type) =>
 !type.GetConstructors().Any()
 ? TypeShouldHaveAtLeastOnePublicConstructor(type)
 : TypeShouldHaveConstructorWithResolvableTypes(type);

 private static string TypeShouldHaveAtLeastOnePublicConstructor(Type type) =>
 string.Format(CultureInfo.InvariantCulture,
 "For the container to be able to create {0}, it should contain at least " +
 "one public constructor.", type.ToFriendlyName());

 private static string TypeShouldHaveConstructorWithResolvableTypes(Type type) =>
 string.Format(CultureInfo.InvariantCulture,
 "For the container to be able to create {0}, it should contain a public " +
 "constructor that only contains parameters that can be resolved.",
 type.ToFriendlyName());
}

// Usage
var container = new Container();
container.Options.ConstructorResolutionBehavior =
 new MostResolvableConstructorBehavior(container);

The previous examples changed the constructor overload resolution for all registered types. This is usually not the best approach, because this promotes ambiguity in design of our classes. Because ambiguity is usually only a problem in code generation scenarios, it’s best to only override the behavior for types that are affected by the code generator.

Overriding Property Injection Behavior

Attribute-based property injection and implicit property injection are not supported by Simple Injector out of the box. With attribute-based property injection the container injects properties that are decorated with an attribute. With implicit property injection the container automatically injects all properties that can be mapped to a registration, but silently skips other properties. An extension point is provided to change the library’s default behavior, which is to not inject any property at all.

Out of the box, Simple Injector does allow explicit property injection based on registration of delegates using the RegisterInitializer method:

container.Register<ILogger, FileLogger>();
container.RegisterInitializer<FileLogger>(instance =>
{
 instance.Path = "c:\logs\log.txt";
});

This enables property injection on a per-type basis and it allows configuration errors to be spot by the C# compiler and is especially suited for injection of configuration values. Downside of this approach is that the Diagnostic Services will not be able to analyze properties injected this way and although the RegisterInitializer can be called on base types and interfaces, it is cumbersome when applying property injection on a larger scale.

Tip: Instead of using property injection to configure components with primitive dependencies, as shown in the last example, consider wrapping the primitive value into a Parameter Object (e.g. FileLoggerSettings) and inject that Parameter Object into the consumer’s constructor instead.

The Simple Injector API exposes the IPropertySelectionBehavior interface to change the way the library does property injection. The example below shows a custom IPropertySelectionBehavior implementation that enables attribute based property injection using any custom attribute:

using System;
using System.Linq;
using System.Reflection;
using SimpleInjector.Advanced;

class PropertySelectionBehavior<T> : IPropertySelectionBehavior where T : Attribute
{
 public bool SelectProperty(PropertyInfo prop) =>
 prop.GetCustomAttributes(typeof(T)).Any();
}

// Usage:
var container = new Container();
container.Options.PropertySelectionBehavior =
 new PropertySelectionBehavior<MyInjectAttribute>();

This enables explicit property injection on all properties that are marked with the supplied attribute (in this case MyInjectAttribute). In case a property is decorated that can’t be injected, the container will throw an exception.

Tip: Dependencies injected by the container through the IPropertySelectionBehavior will be analyzed by the Diagnostic, just like any constructor dependency is analyzed.

Implicit property injection can be enabled by creating an IPropertySelectionBehavior implementation that queries the container to check whether the property’s type to be registered in the container:

public class ImplicitPropertyInjectionBehavior : IPropertySelectionBehavior
{
 private readonly IPropertySelectionBehavior original;
 private readonly ContainerOptions options;

 internal ImplicitPropertyInjectionBehavior(Container container)
 {
 this.options = container.Options;
 this.original = container.Options.PropertySelectionBehavior;
 }

 public bool SelectProperty(Type t, PropertyInfo p) =>
 this.IsImplicitInjectable(t, p) || this.original.SelectProperty(t, p);

 private bool IsImplicitInjectable(Type t, PropertyInfo p) =>
 IsInjectableProperty(p) && this.CanBeResolved(t, p);

 private static bool IsInjectableProperty(PropertyInfo property) =>
 property.CanWrite && property.GetSetMethod(nonPublic: false)?.IsStatic == false;

 private bool CanBeResolved(Type t, PropertyInfo property) =>
 this.GetProducer(new InjectionConsumerInfo(t, property)) != null;

 private InstanceProducer GetProducer(InjectionConsumerInfo info) =>
 this.options.DependencyInjectionBehavior.GetInstanceProducer(info, false);
}

// Usage:
var container = new Container();
container.Options.PropertySelectionBehavior =
 new ImplicitPropertyInjectionBehavior(container);

Warning: Silently skipping properties that can’t be mapped can lead to a DI configuration that can’t be easily verified and can therefore result in an application that fails at runtime instead of failing when the container is verified. Prefer explicit property injection—or better—constructor injection whenever possible.

Overriding Parameter Injection Behavior

Simple Injector does not allow injecting primitive types (such as integers and string) into constructors. The IDependencyInjectionBehavior interface is defined by the library to change this default behavior.

The following article contains more information about changing the library’s default behavior: Primitive Dependencies with Simple Injector#3.

Resolving Unregistered Types

Unregistered-type resolution is the ability to get notified by the container when a type is requested that is currently unregistered in the container. This gives you the change of registering that type. Simple Injector supports this scenario with the ResolveUnregisteredType#4 event. Unregistered-type resolution enables many advanced scenarios. The library itself uses this event for implementing enabling support for decorators.

For more information about how to use this event, please look at the ResolveUnregisteredType event documentation#5 in the reference library#6.

Overriding Lifestyle Selection Behavior

By default, when registering a type without explicitly specifying a lifestyle, that type is registered using the Transient lifestyle. This behavior can be overridden and this is especially useful in batch-registration scenarios.

Here are some examples of registration calls that all register types as Transient:

container.Register<IUserContext, AspNetUserContext>();
container.Register<ITimeProvider>(() => new RealTimeProvider());
container.Collection.Register<ILogger>(typeof(SqlLogger), typeof(FileLogger));
container.Register(typeof(IHandler<>), typeof(IHandler<>).Assembly);
container.RegisterDecorator(typeof(IHandler<>), typeof(LoggingHandlerDecorator<>));
container.RegisterConditional(typeof(IValidator<>), typeof(NullVal<>), c => !c.Handled);
container.RegisterMvcControllers();
container.RegisterWcfServices();
container.RegisterWebApiControllers(GlobalConfiguration.Configuration);

Most of these methods have overloads that allow supplying a different lifestyle. This works great in situations where you register a single type (using one of the Register method overloads for instance), and when all registrations need the same lifestyle. This is less suitable for cases where you auto-register a set of types where each type needs a different lifestyle.

In this case you need to override the way Simple Injector does lifestyle selection. There are two ways of overriding the lifestyle selection.

Overriding the lifestyle selection can done globally by changing the Container.Options.DefaultLifestyle property, as shown in the following example:

container.Options.DefaultLifestyle = Lifestyle.Singleton;

Any registration that’s not explicitly supplied with a lifestyle, will get this lifestyle. In this case all registrations will be made as Singleton.

A more common need is to select the lifestyle based on some context. This can be done by creating custom implementation of ILifestyleSelectionBehavior.

public interface ILifestyleSelectionBehavior {
 Lifestyle SelectLifestyle(Type implementationType);
}

When no lifestyle is explicitly supplied by the user, Simple Injector will call into the registered ILifestyleSelectionBehavior when the type is registered to allow the ILifestyleSelectionBehavior implementation to select the proper lifestyle. The default behavior can be replaced by setting the Container.Options.LifestyleSelectionBehavior property.

Simple Injector’s default ILifestyleSelectionBehavior implementation simply forwards the call to Container.Options.DefaultLifestyle.

The following example changes the lifestyle selection behavior to always register those instances as singleton:

using System;
using SimpleInjector;
using SimpleInjector.Advanced;

// Custom lifestyle selection behavior
public class SingletonLifestyleSelectionBehavior : ILifestyleSelectionBehavior
{
 public Lifestyle SelectLifestyle(Type implementationType) => Lifestyle.Singleton;
}

// Usage
var container = new Container();
container.Options.LifestyleSelectionBehavior = new SingletonLifestyleSelectionBehavior();

In case there is always a single default lifestyle, a much easier to set the Container.Options.DefaultLifestyle property:

container.Options.DefaultLifestyle = Lifestyle.Singleton;

The default Container.Options.LifestyleSelectionBehavior implementation simply returns the configured Container.Options.DefaultLifestyle.

It gets more interesting when the lifestyle changes on the given type. The following example changes the lifestyle selection behavior to pick the lifestyle based on an attribute:

using System;
using System.Reflection;
using SimpleInjector.Advanced;

// Attribute for use by the application
public enum CreationPolicy { Transient, Scoped, Singleton }

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface,
 Inherited = false, AllowMultiple = false)]
public sealed class CreationPolicyAttribute : Attribute
{
 public CreationPolicyAttribute(CreationPolicy policy)
 {
 this.Policy = policy;
 }

 public CreationPolicy Policy { get; }
}

// Custom lifestyle selection behavior
public class AttributeBasedLifestyleSelectionBehavior : ILifestyleSelectionBehavior
{
 private const CreationPolicy DefaultPolicy = CreationPolicy.Transient;

 public Lifestyle SelectLifestyle(Type type) => ToLifestyle(GetPolicy(type));

 private static Lifestyle ToLifestyle(CreationPolicy policy) =>
 policy == CreationPolicy.Singleton ? Lifestyle.Singleton :
 policy == CreationPolicy.Scoped ? Lifestyle.Scoped :
 Lifestyle.Transient;

 private static CreationPolicy GetPolicy(Type type) =>
 type.GetCustomAttribute<CreationPolicyAttribute>()?.Policy ?? DefaultPolicy;
}

// Usage
var container = new Container();
container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

container.Options.LifestyleSelectionBehavior =
 new AttributeBasedLifestyleSelectionBehavior();

container.Register<IUserContext, AspNetUserContext>();

// Usage in application
[CreationPolicy(CreationPolicy.Scoped)]
public class AspNetUserContext : IUserContext
{
 // etc
}

Intercepting the Creation of Types

Intercepting the creation of types allows registrations to be modified. This enables all sorts of advanced scenarios where the creation of a single type or whole object graphs gets altered. Simple Injector contains two events that allow altering the type’s creation: ExpressionBuilding#7 and ExpressionBuilt#8. Both events are quite similar but are called in different stages of the building pipeline.

The ExpressionBuilding event gets called just after the registration’s expression has been created that new up a new instance of that type, but before any lifestyle caching has been applied. This event can, for instance, be used for Context-based injection.

The ExpressionBuilt event gets called after the lifestyle caching has been applied. After lifestyle caching is applied much of the information that was available about the creation of that registration during the time ExpressionBuilding was called, is gone. While ExpressionBuilding is especially suited for changing the relationship between the resolved type and its dependencies, ExpressionBuilt is especially useful for applying decorators or applying interceptors.

Note that Simple Injector has built-in support for applying decorators using the RegisterDecorator#9 extension methods. These methods internally use the ExpressionBuilt event.

Building up External Instances

Some frameworks insist in creating some of the classes you write and want to manage their lifetime. A notorious example of this is the pre-v4.7.2 ASP.NET Web Forms. One of the symptoms you often see with those frameworks is that the classes that the framework creates need to have a default constructor.

This disallows Simple Injector to create those instances and inject dependencies into their constructor. But Simple Injector can still be asked to initialize such instance according the container’s configuration. This is especially useful when overriding the default property injection behavior.

The following code snippet shows how an external instance can be initialized:

public static BuildUp(Page page)
{
 InstanceProducer producer =
 container.GetRegistration(page.GetType(), throwOnFailure: true);
 Registration registration = producer.Registration;
 registration.InitializeInstance(page);
}

This allows any properties and initializers to be applied, but obviously doesn’t allow the lifestyle to be changed, or any decorators to be applied.

By calling the GetRegistration method, the container will create and cache an InstanceProducer instance that is normally used to create the instance. Note however, that the GetRegistration method restricts the shape of the type to initialize. Since GetRegistration is used in cases where Simple Injector creates types for you, Simple Injector will, therefore, check whether it can create that type. This means that if this type has a constructor with arguments that Simple Injector can’t inject (for instance because there are primitive type arguments in there), an exception will be thrown.

In that particular case, instead of requesting an InstanceProducer from the container, you need to create a Registration class using the Lifestyle class:

Registration registration =
 Lifestyle.Transient.CreateRegistration(page.GetType(), container);
registration.InitializeInstance(page);

Interception of Resolved Object Graphs

Simple Injector allows registering a delegate that will be called every time an instance is resolved directly from the container. This allows executing code just before and after an object graph gets resolved. This allows plugging in monitoring or diagnosing the container.

The Glimpse plugin for Simple Injector#10 for instance, makes use of this hook to allow displaying information about which objects where resolved during a web request.

The following example shows the Options.RegisterResolveInterceptor method in action:

container.Options.RegisterResolveInterceptor(CollectResolvedInstance, c => true);

private static object CollectResolvedInstance(
 InitializationContext context, Func<object> instanceProducer)
{
 // Invoke the delegate that calls into Simple Injector to get the requested service.
 object instance = instanceProducer();

 // Collect request specific data for display to the user.
 List<InstanceInitializationData> list = GetListForCurrentRequest(ResolvedInstances);
 list.Add(new InstanceInitializationData(context, instance));

 // Return the resolve instance.
 return instance;
}

The example above shows the registration code from the Glimpse plugin component. It registers an interception delegate to the CollectResolvedInstance method by calling container.Options.RegisterResolveInterceptor. The c => true lambda informs Simple Injector that the CollectResolvedInstance method should always be applied for every service that is being resolved. This makes sense for the Glimpse plugin, because the user would want to get a complete view of what is being resolved during that request.

When a user calls Container.GetInstance or InstanceProducer.GetInstance, instead of creating the requested instance, Simple Injector will call the CollectResolvedInstance method and supplies to that method:

	An InitializationContext that contains information about the service that is requested.

	An Func<object> delegate that allows the requested instance to be created.

The InitializationContext allows access to the InstanceProducer and Registration instances that describe the service’s registration. These two types enable detailed analysis of the resolved service, if required.

An InstanceProducer instance is responsible of caching the compiled factory delegate that allows the creation of new instances (according to their lifestyle) that is created. This factory delegate is a Func<object>. In case a resolve interceptor gets applied to an InstanceProducer, instead of calling that Func<object>, the InstanceProducer will call the resolve interceptor, while supplying that original Func<object> to the interceptor.

Container-locking

Simple Injector v4.8 added a new Container.Options.ContainerLocking event. This allows you to get notified just before the container gets locked. This typically happens when the first instance is resolved, or when the container is being verified. This event can be used to add some last-minute registrations, that should be made last, or to detect who is locking the container to early:

container.Options.ContainerLocking += (sender, e) =>
{
 Console.WriteLine("Container was locked.");
};

Footnotes

	#1

	https://blogs.cuttingedge.it/steven/posts/2013/di-anti-pattern-multiple-constructors/

	#2

	https://github.com/T4MVC/T4MVC

	#3

	https://blogs.cuttingedge.it/steven/posts/2012/primitive-dependencies-with-simple-injector/

	#4

	https://simpleinjector.org/ReferenceLibrary/?topic=html/E_SimpleInjector_Container_ResolveUnregisteredType.htm

	#5

	https://simpleinjector.org/ReferenceLibrary/?topic=html/E_SimpleInjector_Container_ResolveUnregisteredType.htm

	#6

	https://simpleinjector.org/ReferenceLibrary/

	#7

	https://simpleinjector.org/ReferenceLibrary/?topic=html/E_SimpleInjector_Container_ExpressionBuilding.htm

	#8

	https://simpleinjector.org/ReferenceLibrary/?topic=html/E_SimpleInjector_Container_ExpressionBuilding.htm

	#9

	https://simpleinjector.org/ReferenceLibrary/?topic=html/Overload_SimpleInjector_Extensions_DecoratorExtensions_RegisterDecorator.htm

	#10

	https://www.nuget.org/packages/Glimpse.SimpleInjector/

Simple Injector Pipeline

The pipeline is a series of steps that the Simple Injector container follows when registering and resolving each type. Simple Injector supports customizing certain steps in the pipeline to affect the default behavior. This chapter describes these steps and how the pipeline can be customized.

Registration Pipeline

The registration pipeline is the set of steps Simple Injector takes when making a registration in the container. This pipeline mainly consists of a set of validations that is performed. The process is rather straightforward and looks like this:

[image: Register Type Pipeline Diagram]

Warning: The order in which those validations are performed is undocumented and might change from version to version.

Steps:

	Container locked?: When the first type is resolved from the container, the container is locked for further changes. When a call to one of the registration methods is made after that, the container will throw an exception. The container can’t be unlocked. This behavior is fixed and can’t be changed. For a thorough explanation about this design, please read the design principles documentation. That documentation section also explains how to add new registrations after this point.

	Is ambiguous type?: When a type is registered that is considered to be ambiguous, the container will throw an exception. Types such as System.Type and System.String are considered ambiguous, since they have value type semantics and its unlikely that the configuration only contains a single definition of such type. For instance, when components take a string parameter in their constructor, it’s very unlikely that all components need that same value. Instead some components need a connection string, others a path to the file system, etc. To prevent this ambiguity in the configuration, Simple Injector blocks these registrations. This behavior is fixed and can’t be changed.

	Service type registered?: When a service type has already been registered, the container throws an exception. This prevents any accidental misconfigurations. This behavior can be overridden. See the How to override existing registrations for more information.

	Is constructable type?: When the registration is supplied with an implementation type that the container must create and auto-wire (e.g. using Register<TService, TImplementation>()), the container checks if the implementation type is constructable. A type is considered to be constructable when it is a concrete type and has a single public constructor. An exception is thrown when these conditions are not met. This behavior can be overridden by implementing a custom IConstructorResolutionBehavior.

	All ctor params valid?: The constructor that has been selected in the previous step will be analyzed for invalid constructor parameters. Ambiguous types such as System.String and value types such as Int32 and Guid are not allowed. This behavior can be overridden by implementing a custom IDependencyInjectionBehavior. Take a look at this blog post#1 for an elaborate example.

	Lifestyle supplied?: If the user explicitly supplied a Lifestyle to its registration, the registration is done using that lifestyle, i.e. the registration is made using one of the Register method overload that accepts a Lifestyle instance. Otherwise, the configured ILifestyleSelectionBehavior is queried to get the proper lifestyle for the given implementation type. The default ILifestyleSelectionBehavior simply returns the value of Container.Options.DefaultLifestyle. By default this means that the registration is made using the Transient lifestyle, but this behavior can be overridden by either changing the Container.Options.DefaultLifestyle or by replacing the default ILifestyleSelectionBehavior.

	Add registration: When all previous validations succeeded, the registration is added to the container. Although the type may be registered successfully, this still doesn’t mean it can always be resolved. This depends on several other factors such as whether all dependencies can be resolved correctly. These checks cannot be performed during registration, and they are performed during the Resolve Pipeline.

Resolve Pipeline

The resolve pipeline is the set of steps Simple Injector takes when resolving an instance. Many steps in the pipeline can be replaced (orange in the diagram below) to change the default behavior of the container. The following diagram visualizes this pipeline:

[image: Resolve Instance Pipeline Diagram]

Note: The order in which those steps are performed is deterministic and can be safely depended upon.

Steps:

	Type registered?: If a type is requested that is not yet registered, the container falls back to unregistered-type resolution.

	Delegate cached?: At the end of the pipeline, the compiled delegate is cached during the lifetime of the Container instance. Executing the pipeline steps is expensive and caching the delegate is crucial for performance. This does mean though, that, once compiled, the way a type is created cannot be changed.

	Check for recursive calls: The container checks if a type indirectly depends on itself and throw a descriptive exception in this case. This prevents any hard to debug StackOverflowException that might otherwise occur.

	Select ctor: The container selects the single public constructor of the concrete type. This behavior can be overridden by implementing a custom IConstructorResolutionBehavior. When the registration is made using a Func<T> delegate, this and the following steps are skipped.

	Build ctor arguments: The container will call back into itself to resolve all constructor arguments. This results in a recursive call into the container which will trigger building a complete object graph. The container will throw an exception when one of the parameters cannot be resolved. This behavior can be overridden by implementing a custom IDependencyInjectionBehavior. Take a look at this blog post#2 for an elaborate example. The result of this step is an Expression that describes the invocation of the constructor with its arguments, e.g. new MyService(new DbLogger(), new MyRepository(new DbFactory())).

	Select properties: The default behavior of the container is to not inject any properties and without any customization this step will be skipped. This behavior can be changed by implementing a custom IPropertySelectionBehavior. This custom behavior can decide how to handle each property (both public and non-public) of the given implementation. Note that read-only properties (without a setter) and static properties will be queried as well, although they can never be injected. It is the responsibility of the implementation to decide what to do with those properties. Note that the container will not silently skip any properties. If the custom property-selection behavior returns true for a given property, the container throws an exception when the property cannot be injected. For instance, because the dependency can’t be resolved or when the application’s sandbox does not permit accessing internal types. When this step resulted in any properties being injected, it results in an Expression that describes the invocation of a delegate that injects the properties into the type that was created in the previous step, e.g. injectProperties(new PropertyDependency1(), new PropertyDependency2(), new ServiceToInjectInto(new DbLogger()). The injectProperties method in this case is a compiled delegate that takes in the created instance as last element and returns that same instance. The other arguments passed into this delegate are the properties that must be injected. Note that although this Expression calls a delegate, the delegate only sets the type’s properties based on method arguments. The Expression still contains all dependencies of the type (both constructor and property). It is important to note that the structure of this expression might change from version to version, but the fact that the expression holds all dependency information will not (and the component to inject the properties into will always be the last argument, because Simple Injector has to ensure that the type’s dependencies are created first). By building this structure with all information available, we allow the following step to have complete control over the expression. Note that in case the registration is made using a Func<T> delegate, only the properties of the supplied TService will be queried and not the properties of the actually returned type (which might be a sub type of TService). For more information about changing the default behavior, see the Property Injection section on the Advanced Scenarios page.

	Intercept expression (1): By default the container skips this step. Users can hook a delegate onto the ExpressionBuilding event. This event allows molding and changing the expression built in the previous step. Please take a look at the Context-Based Injection section in the Advanced scenarios wiki page for an example of what you can achieve by hooking onto this event. Note that there is a restriction to the changes you can make to the expression. Although the Expression can be changed completely, you have to make sure that any replaced expression returns the same implementation type (or a subtype).

	Apply initializers: Any applicable Action delegates that are registered using RegisterInitializer<T>(Action<T>), will be applied to the expression at this point. When one or more initializers are applied, it results in the creation of an Expression that wraps the original expression and invokes a delegate that calls the Action delegates, i.e. applyInitializers(new MyService()).

	Apply lifestyle: Until this point in the pipeline, the expression that has been built describes the creation of a new instance (transient). This step applies caching to this instance. Lifestyles are applied by Lifestyle implementations. They use the expression that was built-up using the previous steps and they are allowed to compile this expression to a delegate, before applying the caching. This means that the expressiveness about all the type’s dependencies can be embedded in the compiled delegate and is unavailable for analysis and interception when the next step is applied.

	Intercept expression (2): The container’s ExpressionBuilt event gets triggered after the lifestyle has been applied to an expression. The container’s RegisterDecorator extension methods internally make use of this event to decorate any type while preserving the lifestyle of that type. Multiple ExpressionBuilt events could handle the same type and they are all applied in the order in which they are registered.

	Compile expression: In this step, the expression that is the result of the previous step is compiled to a Func<object> delegate. Several optimizations are applied. This step cannot be customized.

	Cache delegate: The compiled delegate is stored for reuse. This step cannot be customized.

	Call delegate: The cached delegate is called to resolve an instance of the registered type. This step cannot be customized.

	Call ‘Resolve Unregistered Type’ event: When a type is requested that is not registered, the container will call the ResolveUnregisteredType event. Users can hook onto this event to make a last-minute registration in the container, even after the container has been locked down.

	Resolved?: When there was a registered ResolveUnregisteredType event that responded to the unregistered type, it is assumed that it has a lifestyle applied. It therefore makes a jump through the pipeline and continues right after the Apply lifestyle step. This allows any post-lifestyle interception (such as decorators) to still be applied to types that are resolved using unregistered-type resolution.

	Is constructable type?: When no ResolveUnregisteredType handled the registration of the given type, the container will check if the type is constructable. This is done by querying the IConstructorResolutionBehavior and IDependencyInjectionBehavior implementations. By default, this means that the type should have a single public constructor, that the constructor arguments should not be ambiguous types (such as String or a value type) and that it can be resolved by the container. If a type is constructable according to these rules, the type is created by running it through the pipeline starting at Select ctor step with the transient lifetime. In other words, concrete types that are not registered explicitly, will by default get resolved with the transient lifestyle. This behavior can be customized. Using the Options.ResolveUnregisteredConcreteTypes flag, for instance, this behavior can be disabled.

	Type is collection?: When the requested type is an IEnumerable<T>, ICollection<T>, Collection<T>, IList<T>, IReadOnlyCollection<T>, or IReadOnlyList<T>, and Container.Options.ResolveUnregisteredCollections is set, the container will build an empty list that will be used as singleton. This collection will be passed on to the Intercept expression step after Apply lifestyle to allow this empty list to still be intercepted and decorated. If the type is not an IEnumerable<T>, the type can’t be created by the container and an exception is thrown. Note that the default value for Container.Options.ResolveUnregisteredCollections is false, which means that the container will throw an exception rather than building an empty list.

Footnotes

	#1

	https://blogs.cuttingedge.it/steven/posts/2012/primitive-dependencies-with-simple-injector/

	#2

	https://blogs.cuttingedge.it/steven/posts/2012/primitive-dependencies-with-simple-injector/

Design Principles

While designing Simple Injector we defined a set of rules that formed the foundation for development. These rules still keep us focused today and continue to help us decide how to implement a feature and which features not to implement. In the section below you’ll find details of the design principles of Simple Injector.

The design principles:

	Make simple use cases easy, make complex use cases possible

	Push developers into best practices

	Fast by default

	Don’t force vendor lock-in

	Never fail silently

	Features should be intuitive

	Communicate errors clearly and describe how to solve them

Make simple use cases easy, make complex use cases possible

This guideline comes directly from the Framework Design Guidelines#1 and is an important guidance for us. Commonly used features should be easy to implement, even for a new user, but the library must be flexible and extensible enough to support complex scenarios.

Push developers into best practices

We believe in good design and best practices. When it comes to Dependency Injection, we believe that we know quite a bit about applying design patterns correctly and also how to prevent applying patterns incorrectly. We have designed Simple Injector in a way that promotes these best practices. Occasional we may explicitly choose to not implement certain features because they don’t steer the developer in the right direction. Our intention has always been to build a library that makes it difficult to shoot yourself in the foot!

Fast by default

For most applications the performance of the DI library is not an issue; I/O is usually the bottleneck. You will find, however, that certain DI libraries are very sensitive to different configurations and you will need to monitor the container for potential performance problems. Most performance problems can be fixed by changing the configuration (changing registrations to singleton, adding caching, etc), no matter which library you use. At that point however it can get really complicated to configure certain libraries.

Making Simple Injector fast by default removes any concerns regarding the performance of the construction of object graphs. Instead of having to monitor Simple Injector’s performance and make ugly tweaks to the configuration when object construction is too slow, you are free to worry about more important things.

Fast by default means that the performance of object instantiation from any of the registration features that the library supplies out-of-the-box will be comparable to the performance of object instantiation done by hand in plain C#.

Don’t force vendor lock-in

The Dependency injection pattern promotes the use of loosely coupled components. When done right, loosely coupled code can be much more maintainable. When building a library that promotes this pattern it would be ironic if that same library was to ask you to take a dependency on the library. The truth is many 3rd-party library providers do want you to use certain abstractions and attributes from their offering and thereby force you to create a hard dependency to their code.

When we build applications ourselves, we try to prevent any vendor lock-in (even to Simple Injector), so why should we force you to get locked into Simple Injector? We don’t want to do this. We want you to get hooked to Simple Injector, but we want this to be through the compelling vision and competing features; not by vendor lock-in. If Simple Injector doesn’t suit your needs you should be able to easily swap it for another competing product, just as you would want to replace your logging library without it affecting your entire code base.

Never fail silently

We all hate the hunt for bugs in our code. It can be made even worse when we discover a library or framework we have chosen to use is hiding these bugs by ignoring them and failing to report them to us. A good example is logging libraries—many of us have been frustrated when we discover our logging libraries continue to run without logging, because we misconfigured it, but didn’t bother to inform us. This frustration can lead to real world costs and a lack of trust in the tools we use.

We decided that Simple Injector should by default never fail silently. If you make a configuration error then Simple Injector should tell you as soon as reasonably possible. We want Simple Injector to fail fast!

Features should be intuitive

This means that features should be easy to use and do the right thing by default.

Communicate errors clearly and describe how to solve them

In our day jobs we regularly encounter exception messages that aren’t helpful or, even worse, are misleading (we have all seen the NullReferenceException). It frustrates us, takes time to track down and therefore costs money. We don’t want to put any developer in that position and therefore defined an explicit design rule stating that Simple Injector should always communicate errors as clearly as possible. And, not only should it describe the problem, it should, where possible, offer details on the options for solving the problem.

If you encounter a scenario where we fail to do this, please let us know. We are serious about this and we will fix it!

Footnotes

	#1

	https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/

Design Decisions

Our design principles have influenced the direction of the development of features in Simple Injector. In this section we would like to explain some of the design decisions.

	The container is locked after the first call to resolve

	The API clearly separates registration of collections from other registrations

	No support for XML based configuration

	Never force users to release what they resolve

	Don’t allow resolving scoped instances outside an active scope

	No out-of-the-box support for property injection

	No out-of-the-box support for dynamic interception

	Limited auto-registration API

	No per-thread lifestyle

	Allow only a single constructor

	No support for optional constructor arguments

The container is locked after the first call to resolve

When an application makes its first call to GetInstance, GetAllIntances or Verify, the container locks itself to prevent any future changes being made by explicit registrations. This strictly separates the configuration of the container from its use and forces the user to configure the container in one single place. This design decision is inspired by the following design principle:

	Push developers into best practices

In most situations it makes little sense to change the configuration once the application is running. This only makes the application more complex, whereas dependency injection as a pattern is meant to lower the total complexity of a system. By strictly separating the registration/startup phase from the phase where the application is in a running state, it is easier to determine how the container will behave and it is easier to verify the container’s configuration. The locking behavior of Simple Injector exists to protect the user from defining invalid and/or confusing combinations of registrations.

Allowing to alter the DI configuration while the application is running could easily cause strange, hard to debug, and hard to verify behavior. This may also mean the application has numerous hard references to the container and this is something you should strive to prevent. Attempting to alter the configuration when running a multi-threaded application would lead to nondeterministic behavior, even if the container itself is thread-safe.

Imagine the scenario where you want to replace some FileLogger component for a different implementation with the same ILogger interface. If there’s a component that directly or indirectly depends on ILogger, replacing the ILogger implementation might not work as you would expect. If the consuming component is registered as singleton, for example, the container should guarantee that only one instance of this component will be created. When you are allowed to change the implementation of ILogger after a singleton instance already holds a reference to the “old” registered implementation, the container has two choices—neither of which are correct:

	Return the cached instance of the consuming component that has a reference to the “wrong” ILogger implementation.

	Create and cache a new instance of that component and, in doing so, break the promise of the type being registered as a singleton and the guarantee that the container will always return the same instance.

The description above is a simple to grasp example of dealing with the runtime replacement of services. But adding new registrations can also cause things to go wrong in unexpected ways. An example would be where the container has previously supplied the object graph with a default implementation resolved through unregistered type resolution.

Problems with thread-safety can easily emerge when the user changes a registration during a web request. If the container allowed such registration change during a request, other requests could directly be impacted by those changes (because, in general, there should only be one Container instance per AppDomain). Depending on things such as the lifestyle of the registration, the use of factories, and how the object graph is structured, it could be a real possibility that another request gets both the old and the new registration. Take for instance a transient registration that is replaced with a different one. If this is done while an object graph for a different thread is being resolved while the service is injected into multiple points within the graph—the graph would contain different instance of that abstraction with different lifetimes at the same time in the same request—and this is bad.

Because we consider it good practice to lock the container, we were able to greatly optimize performance of the container and adhere to the Fast by default principle.

Do note that container lockdown still allows runtime registrations. A few common ways to add registrations to the container are:

	Using unregistered type resolution the container will be able to at a later time resolve new types.

	The Lifestyle.CreateProducer#1 overloads can be called at any point in time to create new InstanceProducer instances that allow building new registrations.

All these options provide users with a safe way to add registrations at a later point in time, without the risks described above.

The API clearly differentiates the registration of collections

When designing Simple Injector, we made a very explicit design decision to define a separate Collection.Register method for registering a collection of services for an abstraction. This design adheres to the following principles:

	Never fail silently

	Features should be intuitive

This design differentiates vastly from how other DI libraries work. Most libraries provide the same API for single registrations and collections. Registering a collection of some abstraction in that case means that you call the Register method multiple times with the same abstraction but with different implementations. There are some clear downsides to such an approach.

	There’s a big difference between having a collection of services and a single service. For many of the services you register, you will have one implementation and it doesn’t make sense for there to be multiple implementations. For other services you will always expect a collection of them (even if you have one or no implementations). In the majority—if not all—of cases you wouldn’t expect to switch dynamically between one and multiple implementations.

	An API that mixes these concepts will be unable to warn you if you accidentally add a second registration for the same service. Those APIs will ‘fail silently’ and simply return one of the items you registered. Simple Injector will throw an exception when you call Register<T> for the same T and will describe that collections should be registered using Collection.Register instead.

	None of the APIs that mix these concepts make it clear which of the registered services is returned if you resolve only one of them. Some libraries will return the first registered element, while others return the last. Although all of them describe this behavior in their documentation it’s not clear from the API itself, i.e. it is not discoverable. An API design like this is unintuitive. A design that separates Register from Collection.Register on the other hand, makes the intention of the code very clear to anyone who reads it.

In general, your components should not depend on an IEnumerable<T>, especially when your application has multiple components that need to work with that T. The problem with injecting IEnumerable<T> into multiple consumers is that you will have to iterate that collection in multiple places. This forces the consumers to know about having multiple implementations and how to iterate and process that collection. As far as the consumer is concerned, this should be an implementation detail. If you ever need to change the way a collection is processed you will have to go through the application, because this logic will have be duplicated throughout the system.

Instead of injecting an IEnumerable<T>, a consumer should instead depend on a single T. You can achieve this using a Composite#2 implementation that wraps the actual collection and contains the logic of processing the collection. Registering composite implementation is easy with Simple Injector because of the clear separation between a single implementation and a collection of implementations. Take the following configuration for example, where you register a collection of ILogger implementations and a single composite implementation for use in the rest of our code:

container.Collection.Register<ILogger>(
 typeof(FileLogger),
 typeof(SqlLogger),
 typeof(EventLogLogger));

container.Register<ILogger, CompositeLogger>(Lifestyle.Singleton);

In the unusual scenario that you need both a default registration and list of registrations, this is still easy to configure in Simple Injector. Take a look at the following example:

container.Register<ILogger, FileLogger>();

container.Collection.Register<ILogger>(
 typeof(ILogger),
 typeof(SqlLogger),
 typeof(EventLogLogger));

The previous example registers both a FileLogger as one-to-one registration for ILogger and a collection of ILogger instances. The first registration in the collection itself is ILogger which means that it points back to the one-to-one mapping using FileLogger.

This way you have full control over which registration is the default one (in this case the first), because ordering of the collection is guaranteed to be the order of registration.

No support for XML based configuration

While designing Simple Injector, we decided to not provide an XML-based configuration API, because we want to:

	Push developers into best practices

Having an XML-centered configuration, however, is not best practice.

XML-based configuration is brittle, error prone, and always provides a subset of what you can achieve with code-based configuration. General consensus is to use code-based configuration as much as possible and only fall back to file-based configuration for the parts of the configuration that really need to be customizable after deployment. These are normally just a few registrations as the majority of changes would still require developer interaction (write unit tests or recompile for instance). Even for those few lines that do need to be configurable, it’s a bad idea to require the fully qualified type name in a configuration file. A configuration switch (true/false or simple enum) is in most cases a better option. You can read the configured value in your code-based configuration, this allows you to keep the type names in your code. This allows you to refactor easily, gives you compile-time support and is much more friendly to the person having to change this configuration file.

Putting fully qualified type names in your configuration files is only encouraged when a plugin architecture is required that allows special plugin assemblies to be dropped in a special folder and to be picked up by the application, without the need of a recompile. But even in that case the number of type names in the configuration should be reduced to the bare minimum, where most types are registered using auto-registration in code.

Never force users to release what they resolve

The Register Resolve Release#3 (RRR) pattern is a common pattern that DI containers implement. In general terms the pattern describes that you should tell the container how to build each object graph (Register) during application start-up, ask the container for an object graph (Resolve) at the beginning of a request, and tell the container when you’re done with that object graph (Release) after the request.

Although this pattern applies to Simple Injector, we never force you to have to explicitly release any service once you are finished with it. With Simple Injector your components are automatically released when the web request finishes, or when you dispose of your Thread Scope or Async Scope. By not forcing you to release what you resolve, we adhere to the following design principles:

	Never fail silently

	Features should be intuitive

A container that expects the user to release the instances they resolve will fail silently when a user forgets to release, because forgetting to release is a failure and the container can’t determine when the user is done with the object graph itself. Forgetting to release can lead to out-of-memory exceptions that are often hard to trace back and are therefore costly to fix. The need to release explicitly is far from intuitive and is therefore not needed when working with Simple Injector.

Don’t allow resolving scoped instances outside an active scope

When you register a component in Simple Injector with a scoped lifestyle, you can only resolve an instance when there is an active instance of that specified scope. For instance, when you register your DbContext as Scoped, resolving that instance on a background thread will fail in Simple Injector. This design is chosen because we want to:

	Never fail silently

The reason is simple—resolving an instance outside of the context of a scope is a bug. The container could decide to return a singleton or transient for you (as other DI libraries do), but neither of these cases is usually what you would expect. Take a look at the DbContext example for instance; the class is normally registered as Scoped for a reason, most likely because you want to reuse one instance for the whole request. Not reusing an instance, but instead injecting a new instance (transient), would most likely not give the expected results. Returning a single instance (singleton) when outside of a scope, i.e. reusing a single DbContext over multiple requests/threads will sooner or later lead you down the path of failure as DbContext instances are not thread-safe.

Because there is not a standard logical default for Simple Injector to return when you request an instance outside of the context of an active scope, the right thing to do is to throw an exception. Returning a transient or singleton is a form of failing silently.

That doesn’t mean that you’re lost when you really need the option of per request and transient or singleton, you are required to configure such a scope explicitly by defining a Hybrid lifestyle. We Make simple use cases easy, and complex use cases possible.

No out-of-the-box support for property injection

Simple Injector has no out-of-the-box support for property injection, to adhere to the following principles:

	Don’t force vendor lock-in

	Never fail silently

In general there are two ways of implementing property injection: implicit property injection and explicit property injection.

With implicit property injection, the container injects any public writable property by default for any component you resolve. This is done by mapping those properties to configured types. When no such registration exists, or when the property doesn’t have a public setter, the property will be skipped. Simple Injector does not do implicit property injection, and for good reason. We think that implicit property injection is simply too… implicit :-). There are many reasons for a container to skip a property, but in none of the cases does the container know if skipping the property is really what the user wants, or whether it was a bug. In other words, the container is forced to fail silently.

With explicit property injection, the container is forced to inject a property and the process will fail immediately when a property can’t be mapped or injected. The common way containers allow you to specify whether a property should be injected or not is by the use of library-defined attributes. As previously discussed, this would force the application to take a dependency on the library, which causes a vendor lock-in.

The use of property injection should be non-standard; constructor injection should be used in the majority—if not all—of cases. If a constructor gets too many parameters (the constructor over-injection code s mell), it is an indication of a violation of the Single Responsibility Principle#4 (SRP). SRP violations often lead to maintainability issues. Instead of fixing constructor over-injection with property injection ,the root cause should be analyzed and the type should be refactored, probably with Facade Services#5.

Another common reason developers start using properties is because they think their dependencies are optional. Instead of using optional property dependencies, best practice is to inject empty implementations (a.k.a. Null Object pattern#6) into the constructor; Dependencies should rarely be optional.

This doesn’t mean that you can’t do property injection with Simple Injector, but with Simple Injector this will have to be explicitly configured.

No out-of-the-box support for dynamic interception

Dynamic interception is a tool-based approach where the decorator classes are generated a library at runtime. Cross-cutting concerns are written in the form of interceptor classes. Those interceptors can than be applied together with the generated decorators to wide range of classes.

Simple Injector does not support dynamic interception out of the box, because we want to:

	Push developers into best practices

	Fast by default

	Don’t force vendor lock-in

Simple Injector tries to push developers into good design, and the use of dynamic interception is often an indication of a suboptimal design. We prefer to promote the use of interception through the use of decorators. If you can’t apply a decorator around a group of related types, you are probably missing a common (generic) abstraction.

Simple Injector is designed to be fast by default. Applying decorators in Simple Injector is just as fast as normal injection, while applying interceptors has a much higher cost, because it involves the use of reflection.

To be able to intercept, you will need to take a dependency on your interception library, because this library defines an interceptor interface (such as Castle’s IInterceptor or Unity’s ICallHandler). Decorators on the other hand can be created without requiring a dependency on an external library. Because vendor lock-in should be avoided, Simple Injector doesn’t define any interfaces or attributes to be used at the application level.

Limited Auto-Registration API

Most DI libraries have a large and advanced auto-registration API that often allow specifying registrations in a fluent way. The downside of these APIs is that developers will struggle to use them correctly; they are often far from intuitive and the library’s documentation needs to be repeatedly consulted.

Instead of creating our own API that would fall into the same trap as all the others, we decided not to have such elaborate API, because:

	Features should be intuitive

In most cases we found it much easier to write batch registrations using LINQ; a language that most developers are already familiar with. Specifying your registrations in LINQ reduces the need to learn yet another (domain-specific) language (with all its quirks).

When it comes to auto-registering generic types things are different. Auto-registering generic types can be very complex without tool support. We have defined a clear API consisting of a few Register and Collection.Register overloads that covers the majority of the cases.

No per-thread lifestyle

A per-thread lifestyle caches instances for as long as the thread lives and stores that instance in thread-static storage, in such way that any calls to GetInstance that are executed on that thread, will get that same instance.

Note: This makes a per-thread lifestyle very different from the Thread-Scoped lifestyle, as the lifetime of an instance is limited to a very clearly defined scope and usually a very short period of time, whereas a per-thread instance will live for the duration of the thread.

While designing Simple Injector, we explicitly decided not to include a Per-Thread lifestyle out of the box, because we want to:

	Push developers into best practices

The Per-Thread lifestyle is very dangerous and in general you should not use it in your application, especially web applications.

This lifestyle should be considered dangerous because it is very hard to predict what the actual lifespan of a thread is. When you create and start a thread using new Thread().Start(), you’ll get a fresh block of thread-static memory, which means the container will create a new per-thread instance for you. When starting threads from the thread pool using ThreadPool.QueueUserWorkItem, however, you may get an existing thread from the pool. The same holds when running in frameworks like ASP.NET and ASP.NET Core. ASP.NET pools threads to increase performance.

All this means that a thread will almost certainly outlive a web request. ASP.NET and other frameworks can run requests asynchronously meaning that a web request can be finished on a different thread to the thread the request started executing on—even if you are not writing asynchronous code using the async and await keywords. These are some of the problems you can encounter when working with a Per-Thread lifestyle.

A web request will typically begin with a call to GetInstance which will load the complete object graph including any services registered with the Per-Thread lifestyle. At some point during the operation the call is postponed (due to the asynchronous nature of the ASP.NET framework). At some future moment in time, ASP.NET will resume processing this call on a different thread and at this point we have a problem—some of the objects in our object graph are tied up on another thread, possibly doing something else for another operation. What a mess!

Because these instances are registered as Per Thread, they are probably not suited to be used in another thread. They are almost certainly not thread-safe (otherwise they would be registered as singleton). Because the first thread that initially started the request is already free to pick up new requests, you can run into the situation where two threads access the same Per-Thread instance simultaneously. This will lead to race conditions and bugs that are hard to diagnose and find.

So in general, using Per Thread is a bad idea and that’s why Simple Injector does not support it. If you wish, you can always shoot yourself in the foot by implementing such a custom lifestyle, but don’t blame us :-)

For registrations with thread affinity, we advise the use of the Thread-Scoped lifestyle.

Allow only a single constructor

Out of the box, Simple Injector only allows building up types that contain a single public constructor, because we want to adhere to the following principles:

	Push developers into best practices

	Never fail silently

Having multiple public constructors on the components that you resolve is an anti-pattern. This anti-pattern is described in more detail in this article#7

This doesn’t mean that it is impossible to do auto-wiring on types with multiple public constructors, but with Simple Injector this behavior will have to be explicitly configured.

No support for optional constructor arguments

Optional constructor arguments allow you to mark an argument as optional, by specifying a default value in its definition. This allows a call to the constructor to be made without supplying a value, in which case the default value will be used. The following code snippet demonstrates a HomeController class with an optional logger argument in its constructor:

public class HomeController
{
 private readonly ILogger logger;

 public HomeController(ILogger logger = null)
 {
 this.logger = logger;
 }
}

Even though C# supports optional arguments, Simple Injector does not allow skipping constructor arguments out of the box, because we want to adhere to the following principles:

	Push developers into best practices

	Never fail silently

Simple Injector does not support optional constructor arguments because constructor dependencies should not be optional. Please read this blog post#8 to understand why optional arguments are a bad idea and what alternatives to optional dependencies exist.

Even though Simple Injector allows its default behavior to be replaced using a custom IDependencyInjectionBehavior, developers are advised not to replace the default behavior to enable optional constructor dependencies, because of the reasons given in the post.

Footnotes

	#1

	https://simpleinjector.org/ReferenceLibrary/?topic=html/Overload_SimpleInjector_Lifestyle_CreateProducer.htm

	#2

	https://en.wikipedia.org/wiki/Composite_pattern

	#3

	https://blog.ploeh.dk/2010/09/29/TheRegisterResolveReleasepattern/

	#4

	https://en.wikipedia.org/wiki/Single_responsibility_principle

	#5

	https://blog.ploeh.dk/2010/02/02/RefactoringtoAggregateServices/

	#6

	https://en.wikipedia.org/wiki/Null_Object_pattern

	#7

	https://blogs.cuttingedge.it/steven/posts/2013/di-anti-pattern-multiple-constructors/

	#8

	https://blogs.cuttingedge.it/steven/posts/2013/di-anti-pattern-multiple-constructors/#optional-dependencies

Legal stuff

Simple Injector License

Simple Injector is published under the MIT-license. Go here#1 to read our license. The MIT License is a free software license originating at the Massachusetts Institute of Technology (MIT). It is a permissive free software license, meaning that it permits reuse within proprietary software provided all copies of the licensed software include a copy of the MIT License terms. Such proprietary software retains its proprietary nature even though it incorporates software under the MIT License.

Contributions

Simple Injector has a strict policy for accepting contributions. Contributions are only accepted by developers who have signed our comprehensive Contributors License Agreement. This agreement helps to ensure that all of the code contributed to the Simple Injector project cannot later be claimed as belonging to any individual or group. This protects the Simple Injector project, its members and its users from any IP#2 claims.

If you would like to learn more on how to become a contributor and how to contribute code to the project, please read the How To Contribute Code page.

Simple Injector Trademark Policy

We, the Simple Injector Contributors, love it when people talk about Simple Injector, build businesses around Simple Injector and produce products that make life better for Simple Injector users and developers. We do, however, have a trademark, which we are obliged to protect. The trademark gives us the exclusive right to use the term to promote websites, services, businesses and products. Although those rights are exclusively ours, we are happy to give people permission to use the term under most circumstances.

The following is a general policy that tells you when you can refer to the Simple Injector name and logo without need of any specific permission from Simple Injector:

First, you must make clear that you are not Simple Injector and that you do not represent Simple Injector. A simple disclaimer on your home page is an excellent way of doing that.

Second, you may not incorporate the Simple Injector name or logo into the name or logo of your website, product, business or service.

Third, you may use the Simple Injector name (but not the Simple Injector logo) only in descriptions of your website, product, NuGet package, business or service to provide accurate information to the public about yourself.

Fourth, you may not use the Simple Injector graphical logo.

If you would like to use the Simple Injector name or logo for any other use, please contact us and we’ll discuss a way to make that happen. We don’t have strong objections to people using the name for their websites and businesses, but we do need the chance to review such use. Generally, we approve your use if you agree to a few things, mainly: (1) our rights to the Simple Injector trademark are valid and superior to yours and (2) you’ll take appropriate steps to make sure people don’t confuse your website, package, or product for ours. In other words, it’s not a big deal, and a short conversation (usually done via email) should clear everything up in short order.

If you currently have a website that is using the Simple Injector name and you have not gotten permission from us, don’t panic. Let us know, and we’ll work it out, as described above.

Footnotes

	#1

	https://simpleinjector.org/license

	#2

	https://en.wikipedia.org/wiki/Intellectual_property

How to Contribute

For any contributions to be accepted you first need to print, sign, scan and email a copy of the CLA#1 to mailto:cla@simpleinjector.org

We request that changes are only made after a discussion#2 and that each change has a related and assigned issue. Changes that do not relate to an approved issue may not be accepted. A feature or bugfix branch will be assigned to the issue. Pull requests on an unrelated branch (such as the master branch) will not be accepted.

Once you have completed your changes:

	Follow 10 tips for better Pull Requests#3.

	Make sure all existing and new unit tests pass.

	Unit tests must conform to Roy Osherove’s Naming Standards for Unit Tests#4 and the AAA pattern#5 must be documented explicitly in each test.

	Make sure it compiles in both Debug and Release mode (xml comments are only checked in the release build).

	Make sure there are no StyleCop#6 warnings {Ctrl + Shift + Y}

	Our maximum line width for code files is 110 characters.

	Make sure the project can be built using the build.bat.

	Submit one or multiple pull requests (see the above 10 tips)

Footnotes

	#1

	https://github.com/simpleinjector/SimpleInjector/raw/master/Simple%20Injector%20Contributor%20License%20Agreement.pdf

	#2

	https://simpleinjector.org/community

	#3

	https://blog.ploeh.dk/2015/01/15/10-tips-for-better-pull-requests/

	#4

	https://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html

	#5

	https://c2.com/cgi/wiki?ArrangeActAssert

	#6

	https://visualstudiogallery.msdn.microsoft.com/cac2a05b-6eb6-4fa2-95b9-1f8d011e6cae

Appendix

	Interception Extensions

	Variance Extensions

	Resolution conflicts caused by dynamic assembly loading

	InjectionConsumerInfo.ServiceType is deprecated

Footnotes

Interception Extensions

Adding interception abilities to Simple Injector.

using System;
using System.Diagnostics;
using System.Linq;
using System.Linq.Expressions;
using System.Reflection;
using System.Runtime.Remoting.Messaging;
using System.Runtime.Remoting.Proxies;

using SimpleInjector;

public interface IInterceptor
{
 void Intercept(IInvocation invocation);
}

public interface IInvocation
{
 object InvocationTarget { get; }
 object ReturnValue { get; set; }
 object[] Arguments { get; }
 void Proceed();
 MethodBase GetConcreteMethod();
}

// Extension methods for interceptor registration
// NOTE: These extension methods can only intercept interfaces, not abstract types.
public static class InterceptorExtensions
{
 public static void InterceptWith<TInterceptor>(
 this Container container, Func<Type, bool> predicate)
 where TInterceptor : class, IInterceptor
 {
 container.Options.ConstructorResolutionBehavior.GetConstructor(typeof(TInterceptor));

 var interceptWith = new InterceptionHelper()
 {
 BuildInterceptorExpression =
 e => BuildInterceptorExpression<TInterceptor>(container),
 Predicate = type => predicate(type)
 };

 container.ExpressionBuilt += interceptWith.OnExpressionBuilt;
 }

 public static void InterceptWith(this Container container,
 Func<IInterceptor> interceptorCreator, Func<Type, bool> predicate)
 {
 var interceptWith = new InterceptionHelper()
 {
 BuildInterceptorExpression =
 e => Expression.Invoke(Expression.Constant(interceptorCreator)),
 Predicate = type => predicate(type)
 };

 container.ExpressionBuilt += interceptWith.OnExpressionBuilt;
 }

 public static void InterceptWith(this Container container,
 Func<ExpressionBuiltEventArgs, IInterceptor> interceptorCreator,
 Func<Type, bool> predicate)
 {
 var interceptWith = new InterceptionHelper()
 {
 BuildInterceptorExpression = e => Expression.Invoke(
 Expression.Constant(interceptorCreator),
 Expression.Constant(e)),
 Predicate = type => predicate(type)
 };

 container.ExpressionBuilt += interceptWith.OnExpressionBuilt;
 }

 public static void InterceptWith(this Container container,
 IInterceptor interceptor, Func<Type, bool> predicate)
 {
 var interceptWith = new InterceptionHelper()
 {
 BuildInterceptorExpression = e => Expression.Constant(interceptor),
 Predicate = predicate
 };

 container.ExpressionBuilt += interceptWith.OnExpressionBuilt;
 }

 [DebuggerStepThrough]
 private static Expression BuildInterceptorExpression<TInterceptor>(
 Container container)
 where TInterceptor : class
 {
 var interceptorRegistration = container.GetRegistration(typeof(TInterceptor));

 if (interceptorRegistration == null)
 {
 // This will throw an ActivationException
 container.GetInstance<TInterceptor>();
 }

 return interceptorRegistration.BuildExpression();
 }

 private class InterceptionHelper {
 private static readonly MethodInfo NonGenericInterceptorCreateProxyMethod = (
 from method in typeof(Interceptor).GetMethods()
 where method.Name == "CreateProxy"
 where method.GetParameters().Length == 3
 select method)
 .Single();

 internal Func<ExpressionBuiltEventArgs, Expression> BuildInterceptorExpression;
 internal Func<Type, bool> Predicate;

 [DebuggerStepThrough]
 public void OnExpressionBuilt(object sender, ExpressionBuiltEventArgs e)
 {
 if (this.Predicate(e.RegisteredServiceType))
 {
 ThrowIfServiceTypeNotInterface(e);
 e.Expression = this.BuildProxyExpression(e);
 }
 }

 [DebuggerStepThrough]
 private static void ThrowIfServiceTypeNotInterface(ExpressionBuiltEventArgs e)
 {
 // NOTE: We can only handle interfaces, because
 // System.Runtime.Remoting.Proxies.RealProxy only supports interfaces.
 if (!e.RegisteredServiceType.IsInterface) {
 throw new NotSupportedException("Can't intercept type " +
 e.RegisteredServiceType.Name + " because it is not an interface.");
 }
 }

 [DebuggerStepThrough]
 private Expression BuildProxyExpression(ExpressionBuiltEventArgs e)
 {
 var expr = this.BuildInterceptorExpression(e);

 // Create call to
 // (ServiceType)Interceptor.CreateProxy(Type, IInterceptor, object)
 var proxyExpression =
 Expression.Convert(
 Expression.Call(NonGenericInterceptorCreateProxyMethod,
 Expression.Constant(e.RegisteredServiceType, typeof(Type)),
 expr,
 e.Expression),
 e.RegisteredServiceType);

 if (e.Expression is ConstantExpression && expr is ConstantExpression)
 {
 return Expression.Constant(CreateInstance(proxyExpression),
 e.RegisteredServiceType);
 }

 return proxyExpression;
 }

 [DebuggerStepThrough]
 private static object CreateInstance(Expression expression)
 {
 var instanceCreator = Expression.Lambda<Func<object>>(expression,
 new ParameterExpression[0])
 .Compile();

 return instanceCreator();
 }
 }
}

public static class Interceptor
{
 public static T CreateProxy<T>(IInterceptor interceptor, T realInstance) =>
 (T)CreateProxy(typeof(T), interceptor, realInstance);

 [DebuggerStepThrough]
 public static object CreateProxy(Type serviceType, IInterceptor interceptor,
 object realInstance)
 {
 var proxy = new InterceptorProxy(serviceType, realInstance, interceptor);
 return proxy.GetTransparentProxy();
 }

 private sealed class InterceptorProxy : RealProxy
 {
 private static MethodBase GetTypeMethod = typeof(object).GetMethod("GetType");

 private object realInstance;
 private IInterceptor interceptor;

 [DebuggerStepThrough]
 public InterceptorProxy(Type classToProxy, object obj, IInterceptor interceptor)
 : base(classToProxy)
 {
 this.realInstance = obj;
 this.interceptor = interceptor;
 }

 public override IMessage Invoke(IMessage msg)
 {
 if (msg is IMethodCallMessage) {
 var message = (IMethodCallMessage)msg;
 return object.ReferenceEquals(message.MethodBase, GetTypeMethod)
 ? this.Bypass(message)
 : this.InvokeMethodCall(message);
 }

 return msg;
 }

 private IMessage InvokeMethodCall(IMethodCallMessage msg)
 {
 var i = new Invocation { Proxy = this, Message = msg, Arguments = msg.Args };
 i.Proceeding = () =>
 i.ReturnValue = msg.MethodBase.Invoke(this.realInstance, i.Arguments);
 this.interceptor.Intercept(i);
 return new ReturnMessage(i.ReturnValue, i.Arguments,
 i.Arguments.Length, null, msg);
 }

 private IMessage Bypass(IMethodCallMessage msg)
 {
 object value = msg.MethodBase.Invoke(this.realInstance, msg.Args);
 return new ReturnMessage(value, msg.Args, msg.Args.Length, null, msg);
 }

 private class Invocation : IInvocation
 {
 public Action Proceeding;
 public InterceptorProxy Proxy { get; set; }
 public object[] Arguments { get; set; }
 public IMethodCallMessage Message { get; set; }
 public object ReturnValue { get; set; }
 public object InvocationTarget => this.Proxy.realInstance;
 public void Proceed() => this.Proceeding();
 public MethodBase GetConcreteMethod() => this.Message.MethodBase;
 }
 }
}

After copying the previous code snippet to your project, you can add interception using the following lines of code:

// Register a MonitoringInterceptor to intercept all interface
// service types, which type name end with the text 'Repository'.
container.InterceptWith<MonitoringInterceptor>(
 serviceType => serviceType.Name.EndsWith("Repository"));

// When the interceptor (and its dependencies) are thread-safe,
// it can be registered as singleton to prevent a new instance
// from being created and each call. When the intercepted service
// and both the interceptor are both singletons, the returned
// (proxy) instance will be a singleton as well.
container.RegisterSingle<MonitoringInterceptor>();

// Here is an example of an interceptor implementation.
// NOTE: Interceptors must implement the IInterceptor interface:
private class MonitoringInterceptor : IInterceptor
{
 private readonly ILogger logger;

 public MonitoringInterceptor(ILogger logger)
 {
 this.logger = logger;
 }

 public void Intercept(IInvocation invocation)
 {
 var watch = Stopwatch.StartNew();

 // Calls the decorated instance.
 invocation.Proceed();

 var decoratedType = invocation.InvocationTarget.GetType();

 this.logger.Log(string.Format("{0} executed in {1} ms.",
 decoratedType.Name, watch.ElapsedMilliseconds));
 }
}

Footnotes

Variance Extensions

Allowing Simple Injector to resolve a variant registration.

The following code snippet adds the ability to Simple Injector to resolve an assignable variant implementation, in case the exact requested type is not registered.

using System;
using System.Linq;
using SimpleInjector;

public static class VarianceExtensions
{
 /// <summary>
 /// When this method is called on a container, it allows the container to map an
 /// unregistered requested (interface or delegate) type to an assignable and
 /// (interface or delegate) type that has been registered in the container. When
 /// there are multiple compatible types, an <see cref="ActivationException"/> will
 /// be thrown.
 /// </summary>
 /// <param name="ContainerOptions">The options to make the registrations in.</param>
 public static void AllowToResolveVariantTypes(this ContainerOptions options)
 {
 var container = options.Container;
 container.ResolveUnregisteredType += (sender, e) =>
 {
 Type serviceType = e.UnregisteredServiceType;

 if (!serviceType.IsGenericType || e.Handled) return;

 var registrations = FindAssignableRegistrations(container, serviceType);

 if (!registrations.Any())
 {
 // No registration found. We're done.
 }
 else if (registrations.Length == 1)
 {
 // Exactly one registration. Let's map the registration to the
 // unregistered service type.
 e.Register(registrations[0].Registration);
 }
 else
 {
 var names = string.Join(", ",
 registrations.Select(r => r.ServiceType.ToFriendlyName()));

 throw new ActivationException(string.Format(
 "There is an error in the container's configuration. It is impos" +
 "sible to resolve type {0}, because there are {1} registrations " +
 "that are applicable. Ambiguous registrations: {2}.",
 serviceType.ToFriendlyName(), registrations.Length, names));
 }
 };
 }

 private static InstanceProducer[] FindAssignableRegistrations(
 Container container, Type serviceType)
 {
 Type serviceTypeDefinition = serviceType.GetGenericTypeDefinition();

 return (
 from reg in container.GetCurrentRegistrations()
 where reg.ServiceType.IsGenericType
 where reg.ServiceType.GetGenericTypeDefinition() == serviceTypeDefinition
 where serviceType.IsAssignableFrom(reg.ServiceType)
 select reg)
 .ToArray();
 }
}

After copying the previous code snippet to your project, you can use the extension method as follows:

var container = new Container();

container.Options.AllowToResolveVariantTypes();

// IEventHandler<in TEvent>
this.container.Register<IEventHandler<CustomerMovedEvent>, CustomerMovedEventHandler>();

// MoveCustomerAbroadEvent inherits from MoveCustomerEvent
var handler = this.container.GetInstance<IEventHandler<CustomerMovedAbroadEvent>>();

// Assert
Assert.IsInstanceOfType(handler, typeof(CustomerMovedEventHandler));

Footnotes

Resolution conflicts caused by dynamic assembly loading

Simple Injector can sometimes throw an exception message similar to the following when batch-registration is mixed with dynamic loading of assemblies:

Type {type name} is a member of the assembly {assembly name} which seems to have been loaded more than once. The CLR believes the second instance of the assembly is a different assembly to the first. It is this multiple loading of assemblies that is causing this issue. The most likely cause is that the same assembly has been loaded from different locations within different contexts.

What’s the problem?

This exception is thrown by Simple Injector when trying to resolve a type for which it does not have an exact registration, but finds a registration for a different type with the exact same type name.

The problem is usually caused by incorrect assembly loading: the same assembly has been loaded multiple times, leading the common language runtime to believe that the multiple instances of the assembly are different assemblies. Although both assemblies contain the same type, as far as the runtime is concerned there are two different types, and they are completely unrelated. Simple Injector cannot automatically fix this problem - the runtime sees the types as unrelated and Simple Injector cannot implement an automatic conversion. Instead, Simple Injector will halt the resolution process and throw an exception.

A common reason leading to this situation is through the use of Assembly.LoadFile, instead of using Assembly.Load#1 or in an ASP.NET environment BuildManager.GetReferencedAssemblies()#2. Assembly.Load returns an already loaded assembly even if a different path is specified, Assembly.LoadFile does not (depending on the current assembly loading context), it loads a duplicate instance.

So what do you need to do?

Avoid using Assembly.LoadFile and use Assembly.Load as shown in the following example:

Assembly assembly = Assembly.Load(AssemblyName.GetAssemblyName("c:\..."));

For an ASP.NET application use BuildManager.GetReferencedAssemblies as shown in the following example:

var assemblies = BuildManager.GetReferencedAssemblies().Cast<Assembly>();

The GetReferencedAssemblies method will load all referenced assemblies located within the web application’s /bin folder of the ASP.NET temp directory where the referenced assemblies are shadow copied by default.

Footnotes

	#1

	https://msdn.microsoft.com/en-us/library/x4cw969y(v=vs.110).aspx

	#2

	https://msdn.microsoft.com/en-us/library/system.web.compilation.buildmanager.getreferencedassemblies(v=vs.110).aspx

Compiler Error: ‘InjectionConsumerInfo.ServiceType’ is deprecated

With Simple Injector v4, the properties InjectionConsumerInfo.ServiceType and ExpressionBuildingEventArgs.RegisteredServiceType have been marked obsolete and an exception will be thrown when these properties are called at runtime.

When using these properties the C# compiler will emit one of the following compiler errors:

Error CS0619 ‘InjectionConsumerInfo.ServiceType’ is obsolete: ‘This property has been removed. Please use ImplementationType instead.

Error CS0619 ‘ExpressionBuildingEventArgs.RegisteredServiceType’ is obsolete: ‘This property has been removed. Please use KnownImplementationType instead.

What’s the problem?

The InjectionConsumerInfo and ExpressionBuildingEventArgs classes are used at a point in the pipeline where only the given implementation type is known. Although in some cases the actual service type could be determined correctly, in other cases it just contained a wrong value (of a different registration).

InjectionConsumerInfo and ExpressionBuildingEventArgs are used by Registration instances. A Registration instance is responsible for creating and caching a specific implementation, but it has no notion of the abstraction/service for which it is registered. This is deliberate, since a Registration can be reused by multiple InstanceProducer instances. InstanceProducer instances are responsible of the mapping from an abstraction to the implementation provided by a Registration.

The following example shows multiple registrations for the same implementation:

container.Register<IFoo, FooBar>(Lifestyle.Singleton);
container.Register<IBar, FooBar>(Lifestyle.Singleton);

These registrations result in two separate InstanceProducer instances (one for IFoo and one for IBar), but both use the same Registration instance for FooBar. This ensures that a single instance of FooBar will exist within that Container instance.

The result of this is that when FooBar is built, there are multiple possible abstractions. However, since a Registration is only built once, it could only be aware of the first service type it is built for, which could be either IFoo or IBar.

Since the use of these properties was ambiguous and could lead to fragile configurations, they needed to be removed.

So what should I do instead?

In general, try to use the ImplementationType or KnownImplementationType properties instead. If required, you can extract the actual service type from the implementation type using the new IsClosedTypeOf, GetClosedTypeOf and GetClosedTypesOf extension methods.

The following snippet shows how to use the GetClosedTypeOf method:

container.RegisterConditional(typeof(IRepository<,>), typeof(ReadOnlyRepo<>), context =>
{
 var implementation = context.Consumer.ImplementationType;
 var serviceType = implementation.GetClosedTypeOf(typeof(IRepository<>));
 var entityType = serviceType.GetGenericArguments()[0];
 return typeof(IReadOnlyEntity).IsAssignableFrom(entityType);
});

The GetClosedTypeOf will throw an exception when the ImplementationType implements more than one closed-generic version of the supplied open-generic type. In case multiple closed-generic abstractions are expected, GetClosedTypesOf can be used. It returns a Type array.

Footnotes

Index

ASP.NET Core MVC Integration Guide

Simple Injector offers the Simple Injector ASP.NET Core MVC Integration NuGet package#1 for integration with ASP.NET Core.

WARNING: This page is specific for Simple Injector v4.0 till v4.5. For v4.6 and up, there is a new integration page available verification. Because of the numerous bug fixes and improvements made, you are advised to updated to the latest v4.x integration packages.

NOTE: Starting with v4.1, Simple Injector’s ASP.NET Core integration packages are available for ASP.NET Core v2.0 and up only. For ASP.NET Core v1.x, please use v4.0.

The following code snippet shows how to use the integration package to apply Simple Injector to your web application’s Startup class.

// You'll need to include the following namespaces
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Mvc.Controllers;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.AspNetCore.Http;

using SimpleInjector;
using SimpleInjector.Lifestyles;
using SimpleInjector.Integration.AspNetCore.Mvc;
using System.Threading.Tasks;

public class Startup
{
 private Container container = new Container();

 public Startup(IHostingEnvironment env) {
 // ASP.NET default stuff here
 }

 // This method gets called by the runtime.
 public void ConfigureServices(IServiceCollection services)
 {
 // ASP.NET default stuff here
 services.AddMvc();

 IntegrateSimpleInjector(services);
 }

 private void IntegrateSimpleInjector(IServiceCollection services)
 {
 container.Options.DefaultScopedLifestyle = new AsyncScopedLifestyle();

 services.AddHttpContextAccessor();

 services.AddSingleton<IControllerActivator>(
 new SimpleInjectorControllerActivator(container));
 services.AddSingleton<IViewComponentActivator>(
 new SimpleInjectorViewComponentActivator(container));

 services.EnableSimpleInjectorCrossWiring(container);
 services.UseSimpleInjectorAspNetRequestScoping(container);
 }

 // Configure is called after ConfigureServices is called.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 InitializeContainer(app);

 // Add custom middleware
 app.UseMiddleware<CustomMiddleware1>(container);
 app.UseMiddleware<CustomMiddleware2>(container);

 container.Verify();

 // ASP.NET default stuff here
 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }

 private void InitializeContainer(IApplicationBuilder app)
 {
 // Add application presentation components:
 container.RegisterMvcControllers(app);
 container.RegisterMvcViewComponents(app);

 // Add application services. For instance:
 container.Register<IUserService, UserService>(Lifestyle.Scoped);

 // Allow Simple Injector to resolve services from ASP.NET Core.
 container.AutoCrossWireAspNetComponents(app);
 }
}

NOTE: Please note that when integrating Simple Injector in ASP.NET Core, you do not replace ASP.NET’s built-in container, as advised by the Microsoft documentation#2. The practice with Simple Injector is to use Simple Injector to build up object graphs of your application components and let the built-in container build framework and third-party components, as shown in the previous code snippet. To understand the rationale around this, please read this article#3.

Wiring custom middleware

The previous Startup snippet already showed how a custom middleware class can be used in the ASP.NET Core pipeline. The Simple Injector ASP.NET Core integration packages v4.1 and up add an UseMiddleware extension method on top of IApplicationBuilder that allows adding custom middleware. The following listing shows how a CustomMiddleware class is added to the pipeline.

app.UseMiddleware<CustomMiddleware>(container);

The type supplied to UseMiddleware should implement Microsoft.AspNetCore.Http.IMiddleware. A compile-error will be given in case the middleware does not implement that interface.

NOTE: The UseMiddleware extension method is new in v4.1.

This UseMiddleware overload ensures two particular things:

	Adds a middleware type to the application’s request pipeline. The middleware will be resolved from the supplied the Simple Injector container.

	The middleware type will be added to the container for verification.

The following code snippet shows how such CustomMiddleware might look like:

// Example of some custom user-defined middleware component.
public sealed class CustomMiddleware : Microsoft.AspNetCore.Http.IMiddleware
{
 private readonly ILoggerFactory loggerFactory;
 private readonly IUserService userService;

 public CustomMiddleware(ILoggerFactory loggerFactory, IUserService userService)
 {
 this.loggerFactory = loggerFactory;
 this.userService = userService;
 }

 public async Task InvokeAsync(HttpContext context, RequestDelegate next)
 {
 // Do something before
 await next(context);
 // Do something after
 }
}

Notice how the CustomMiddleware class contains dependencies. When the middleware is added to the pipeline using the previously shown UseMiddleware overload, it will be resolved from Simple Injector on each request, and its dependencies will be injected.

Cross wiring ASP.NET and third-party services

When your application code (e.g. a Controller) needs a service which is defined by ASP.NET Core or any third-party library, it is sometimes necessary to get such a dependency from ASP.NET Core’s built-in configuration system. This is called cross wiring. Cross wiring is the process where a type is created and managed by the ASP.NET Core configuration system and is fed to Simple Injector so it can use the created instance to supply it as a dependency to your application code.

The easiest way to use cross wiring is to use the AutoCrossWireAspNetComponents extension method, as shown in the listing at the start of this page.

NOTE: The AutoCrossWireAspNetComponents extension method is new in Simple Injector v4.1.

To setup cross wiring, first you must make a call to EnableSimpleInjectorCrossWiring on IServiceCollection in the ConfigureServices method of your Startup class.

public void ConfigureServices(IServiceCollection services)
{
 ...

 services.EnableSimpleInjectorCrossWiring(container);
}

When cross wiring is enabled, Simple Injector can be instructed to resolve missing dependencies from ASP.NET Core by calling AutoCrossWireAspNetComponents as part of the Startup class’s Configure method:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 ...

 container.AutoCrossWireAspNetComponents(app);
}

This will accomplish the following:

	Anytime Simple Injector needs to resolve a dependency that is not registered, it will query the IServiceCollection to see whether this dependency exists in the ASP.NET Core configuration system.

	In case the dependency exists in IServiceCollection, Simple Injector will ensure that the dependency is resolved from ASP.NET Core anytime it is requested, by requesting it from IApplicationBuilder.

	In doing so, Simple Injector will preserve the dependency’s lifestyle. This allows application components that depend on external services to be diagnosed for Lifestyle Mismatches.

	In case no suitable dependency exists in the IServiceCollection, Simple Injector will fall back to its default behavior. This most likely means that an expressive exception is thrown, because the object graph can’t be fully composed.

Simple Injector’s auto cross wiring has the following limitations:

	Collections (e.g. IEnumerable<T>) will not be auto cross wired because of unbridgeable differences between how Simple Injector and ASP.NET Core’s configuration system handle collections. If a framework or third-party supplied collection should be injected into an application component that is constructed by Simple injector, such collection should be cross wired manually. In that case, you must take explicit care to ensure no Lifestyle Mismatches occur—i.e. you should make the cross wired registration with the lifestyle equal to the shortest lifestyle of the elements of the collection.

	Cross wiring is a one-way process. By using AutoCrossWireAspNetComponents, ASP.NET’s configuration system will not automatically resolve its missing dependencies from Simple Injector. When an application component, composed by Simple Injector, needs to be injected into a framework or third-party component, this has to be set up manually by adding a ServiceDescriptor to the IServiceCollection that requests the dependency from Simple Injector. This practice however should be quite rare.

	Simple Injector will not be able to verify and diagnose object graphs built by the configuration system itself. Those components and their registrations are provided by Microsoft and third-party library makers—you should assume their correctness.

The AutoCrossWireAspNetComponents method is new in v4.1 and supersedes the old CrossWire<TService> method, because the latter requires every missing dependency to be cross wired explicitly. CrossWire<TService> is still available for backwards compatibility and to handle corner-case scenarios.

Like AutoCrossWireAspNetComponents, CrossWire<TService> does the required plumbing such as making sure the type is registered with the same lifestyle as configured in ASP.NET Core, but with the difference of just cross wiring that single supplied type. The following listing demonstrates its use:

container.CrossWire<ILoggerFactory>(app);
container.CrossWire<IOptions<IdentityCookieOptions>>(app);

NOTE: Even though AutoCrossWireAspNetComponents makes cross wiring very easy, you should still prevent letting application components depend on types provided by ASP.NET as much as possible. In most cases it not the best solution and in violation of the Dependency Inversion Principle#4. Instead, application components should typically depend on application-provided abstractions. These abstractions can be implemented by proxy and/or adapter implementations that forward the call to the framework component. In that case cross wiring can still be used to allow the framework component to be injected into the adapter, but this isn’t required.

Working with IOptions<T>

ASP.NET Core contains a new configuration model based on an IOptions<T> abstraction. We advise against injecting IOptions<T> dependencies into your application components. Instead let components depend directly on configuration objects and register those objects as instances (using RegisterInstance). This ensures that configuration values are read during application start up and it allows verifying them at that point in time, allowing the application to fail fast.

Letting application components depend on IOptions<T> has some unfortunate downsides. First of all, it causes application code to take an unnecessary dependency on a framework abstraction. This is a violation of the Dependency Inversion Principle, which prescribes the use of application-tailored abstractions. Injecting an IOptions<T> into an application component only makes this component more difficult to test, while providing no additional benefits for that component. Application components should instead depend directly on the configuration values they require.

IOptions<T> configuration values are read lazily. Although the configuration file might be read upon application start up, the required configuration object is only created when IOptions<T>.Value is called for the first time. When deserialization fails, because of application misconfiguration, such error will only be appear after the call to IOptions<T>.Value. This can cause misconfigurations to keep undetected for much longer than required. By reading—and verifying—configuration values at application start up, this problem can be prevented. Configuration values can be injected as singletons into the component that requires them.

To make things worse, in case you forget to configure a particular section (by omitting a call to services.Configure<T>) or when you make a typo while retrieving the configuration section (e.g. by supplying the wrong name to Configuration.GetSection(name)), the configuration system will simply supply the application with a default and empty object instead of throwing an exception! This may make sense when building framework or third-party components, but not so much for application development, as it easily leads to fragile applications.

Because you want to verify the configuration at start-up, it makes no sense to delay reading it, and that makes injecting IOptions<T> into your application components plain wrong. Depending on IOptions<T> might still be useful when bootstrapping the application, but not as a dependency anywhere else in your application.

Once you have a correctly read and verified configuration object, registration of the component that requires the configuration object is as simple as this:

MyMailSettings mailSettings =
 config.GetSection("Root:SectionName").Get<MyMailSettings>();

// Verify mailSettings here (if required)

// Supply mailSettings as constructor argument to a type that requires it,
container.Register<IMessageSender>(() => new MailMessageSender(mailSettings));

// or register MailSettings as singleton in the container.
container.RegisterInstance<MyMailSettings>(mailSettings);
container.Register<IMessageSender, MailMessageSender>();

Using Hosted Services

A hosted service is a background task running in an ASP.NET Core service. A hosted service implements the IHostedService interface and can run at certain intervals. When added to the ASP.NET Core pipeline, a hosted service instance will be referenced indefinitely by ASP.NET Core. This means that your hosted service implementation is effectively a Singleton and should be configured as such.

When you want your hosted service implementation to be resolved from Simple Injector, the most straight-forward way is to register it both in Simple Injector and cross wire it in the services instance (the IServiceCollection implementation) as shown here:

container.RegisterSingleton<MyHostedService>();
services.AddSingleton<Microsoft.Extensions.Hosting.IHostedService>(
 _ => container.GetInstance<MyHostedService>());

WARNING: As hosted service instances are referenced indefinitely by ASP.NET Core, it is important to register it as Singleton in Simple Injector. This allows Simple Injector’s diagnostics to check for lifestyle mismatches.

In case your hosted service needs to run repeatedly at certain intervals, it becomes important to start the service’s operation in a Scope. This allows instances with Transient and Scoped lifestyles to be resolved.

In case you require multiple hosted services that need to run at specific intervals, at can be beneficial to create a wrapper implementation that takes care of the most important plumbing. The TimedHostedService<TService> below defines such reusable wrapper:

using System;
using System.Threading;
using System.Threading.Tasks;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using SimpleInjector;
using SimpleInjector.Lifestyles;

public class TimedHostedService<TService> : IHostedService, IDisposable
 where TService : class
{
 private readonly Settings settings;
 private readonly ILogger logger;
 private readonly Timer timer;

 public TimedHostedService(Settings settings, ILoggerFactory loggerFactory)
 {
 this.settings = settings;
 this.logger = loggerFactory.CreateLogger<TimedHostedService<TService>>();
 this.timer = new Timer(callback: _ => this.DoWork(settings.Container));
 }

 public Task StartAsync(CancellationToken cancellationToken)
 {
 // Verify if TService can be resolved
 this.settings.Container.GetRegistration(typeof(TService), true);
 // Start the timer
 this.timer.Change(dueTime: TimeSpan.Zero, period: this.settings.Interval);
 return Task.CompletedTask;
 }

 private void DoWork(Container container)
 {
 try
 {
 using (AsyncScopedLifestyle.BeginScope(container)) {
 var service = container.GetInstance<TService>();
 this.settings.Action(service);
 }
 }
 catch (Exception ex)
 {
 this.logger.LogError(ex, ex.Message);
 }
 }

 public Task StopAsync(CancellationToken cancellationToken)
 {
 this.timer.Change(Timeout.Infinite, 0);
 return Task.CompletedTask;
 }

 public void Dispose() => this.timer.Dispose();

 public class Settings
 {
 public readonly Container Container;
 public readonly TimeSpan Interval;
 public readonly Action<TService> Action;

 public Settings(
 Container container, TimeSpan interval, Action<TService> action)
 {
 this.Container = container;
 this.Interval = interval;
 this.Action = action;
 }
 }
}

This reusable TimedHostedService<TService> allows a given service to be resolved and executed within a new AsyncScopedLifestyle, while ensuring that any errors are logged.

The following code snippet shows how this TimedHostedService<TService> can be configured for an IProcessingService

// AddHostedService method is part of the Microsoft.Extensions.Hosting package
services.AddHostedService<TimedHostedService<IProcessingService>>();
services.AddSingleton(new TimedHostedService<IProcessingService>.Settings(
 container,
 interval: TimeSpan.FromSeconds(10),
 action: service => service.DoSomeWork()));

The previous snippet uses the AddHostedService<T> extension method of the Microsoft.Extensions.Hosting package to register the TimedHostedService<IProcessingService> to the ASP.NET Core configuration system. This class requires a TimedHostedService<TService>.Settings object in its constructor, which is configured using the second line. The settings specifies the interval and the action to execute—in this case the action on IProcessingService.

Using [FromServices] in ASP.NET Core MVC Controllers

Besides injecting dependencies into a controller’s constructor, ASP.NET Core allows injecting dependencies directly into action methods#5 using method injection. This is done by marking a corresponding action method argument with the [FromServices] attribute.

While the use of [FromServices] works for services registered in ASP.NET Core’s built-in configuration system (i.e. IServiceCollection), the Simple Injector integration package, however, does not integrate with [FromServices] out of the box. This is by design and adheres to our design guidelines, as explained below.

IMPORTANT: Simple Injector’s ASP.NET Core integration packages do not allow any Simple Injector registered dependencies to be injected into ASP.NET Core controller action methods using the [FromServices] attribute.

The use of method injection, as the [FromServices] attribute allows, has a few considerate downsides that should be prevented.

Compared to constructor injection, the use of method injection in action methods hides the relationship between the controller and its dependencies from the container. This allows a controller to be created by Simple Injector (or ASP.NET Core’s built-in container for that matter), while the invocation of an individual action might fail, because of the absence of a dependency or a misconfiguration of the dependency’s object graph. This can cause configuration errors to stay undetected longer than strictly necessary. Especially when using Simple Injector, it blinds its diagnostic abilities which allow you to verify the correctness at application start-up or as part of a unit test.

You might be tempted to apply method injection to prevent the controller’s constructor from becoming too large. But big constructors are actually an indication that the controller itself is too big. It is a common code smell named Constructor over-injection#6. This is typically an indication that the class violates the Single Responsibility Principle#7 meaning that the class is too complex and will be hard to maintain.

A typical solution to this problem is to split up the class into multiple smaller classes. At first this might seem problematic for controller classes, because they can act as gateway to the business layer and the API signature follows the naming of controllers and their actions. Do note, however, that this one-to-one mapping between controller names and the route of your application is not a requirement. ASP.NET Core has a very flexible routing system#8 that allows you to completely change how routes map to controller names and even action names. This allows you to split controllers into very small chunks with a very limited number of constructor dependencies and without the need to fall back to method injection using [FromServices].

Simple Injector promotes best practices, and because of downsides described above, we consider the use of the [FromServices] attribute not to be a best practice. This is why we choose not to provide out-of-the-box support for injecting Simple Injector registered dependencies into controller actions.

In case you still feel method injection is the best option for you, you can plug in a custom IModelBinderProvider implementation returning a custom IModelBinder that resolves instances from Simple Injector.

Resolving services from MVC’s ValidationContext

ASP.NET Core MVC allows you to implement custom validation logic inside model classes using the IValidatableObject interface. Although there is nothing inherently wrong with placing validation logic inside the model object itself, problems start to appear when that validation logic requires services to work. By default this will not work with Simple Injector, as the ValidationContext.GetService method forwards the call to the built-in configuration system—not to Simple Injector.

In general, however, you should prevent calling GetService or similar methods from within application code, such as MVC model classes. This leads to the Service Locator anti-pattern.

Instead, follow the advice given in this Stack Overflow answer#9.

Using Razor Pages

ASP.NET Core 2.0 introduced an MVVM-like model, called Razor Pages#10. A Razor Page combines both data and behavior in a single class.

Simple Injector v4.5 adds integration for Razor Pages inside the SimpleInjector.Integration.AspNetCore.Mvc integration package. This integration comes in the form of a custom IPageModelActivatorProvider implementation and extension method to auto-register all application’s Razor Pages.

The following code snippet shows how to replace the built-in IPageModelActivatorProvider with one that allows Simple Injector to resolve Razor Page’s Page Models. This code should be placed in the ConfigureServices method of your Startup class:

services.AddSingleton<IPageModelActivatorProvider>(
 new SimpleInjectorPageModelActivatorProvider(container));

To be able for the SimpleInjectorPageModelActivatorProvider to resolve Page Model instances, they need to be registered explicitly in the container. This must be done in a later stage, i.e. inside the Configure method of the Startup class:

container.RegisterPageModels(app);

This method works in similar fashion as its RegisterMvcControllers and RegisterMvcViewComponents counter parts do, as shown in the page’s first code listing.

This is all that is required to integrate Simple Injector with ASP.NET Core Razor Pages.

Working with ASP.NET Core Identity

The default Visual Studio template comes with built-in authentication through the use of ASP.NET Core Identity. The default template requires a fair amount of cross wired dependencies. Using the new AutoCrossWireAspNetComponents method of version 4.1 of the Simple Injector ASP.NET Core Integration package, however, integration with ASP.NET Core Identity couldn’t be more straightforward. When you followed the cross wire guidelines, this is all you’ll have to do to get Identity running.

NOTE: It is highly advisable to refactor the AccountController to not to depend on IOptions<IdentityCookieOptions> and ILoggerFactory. See the topic about IOptions<T> for more information.

Footnotes

	#1

	https://www.nuget.org/packages/SimpleInjector.Integration.AspNetCore.Mvc

	#2

	https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection#replacing-the-default-services-container

	#3

	https://simpleinjector.org/blog/2016/06/whats-wrong-with-the-asp-net-core-di-abstraction/

	#4

	https://en.wikipedia.org/wiki/Dependency_inversion_principle

	#5

	https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/dependency-injection?view=aspnetcore-2.1#action-injection-with-fromservices

	#6

	https://blog.ploeh.dk/2018/08/27/on-constructor-over-injection/

	#7

	https://en.wikipedia.org/wiki/Single_responsibility_principle

	#8

	https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing

	#9

	https://stackoverflow.com/a/55846598/264697

	#10

	https://docs.microsoft.com/en-us/aspnet/core/razor-pages/

ASP.NET Core and ASP.NET Core MVC Integration Guide

Simple Injector offers the Simple Injector ASP.NET Core MVC Integration NuGet package#1 for integration with ASP.NET Core MVC.

IMPORTANT: This page is specific to the integration packages for Simple Injector v4.6 and up. In case you are using an older version of Simple Injector, please see the old integration page. However, in the context of integration with ASP.NET Core, you are advised to upgrade to v4.8. Those versions fixed numerous bugs concerning integration with ASP.NET Core.

The following code snippet shows how to use the integration package to apply Simple Injector to your web application’s Startup class.

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using SimpleInjector;

public class Startup
{
 private Container container = new Container();

 public Startup(IHostingEnvironment env)
 {
 // ASP.NET default stuff here
 }

 public void ConfigureServices(IServiceCollection services)
 {
 // ASP.NET default stuff here
 services.AddMvc();

 services.AddLogging();
 services.AddLocalization(options => options.ResourcesPath = "Resources");

 services.AddSimpleInjector(container, options =>
 {
 // AddAspNetCore() wraps web requests in a Simple Injector scope.
 options.AddAspNetCore()
 // Ensure activation of a specific framework type to be created by
 // Simple Injector instead of the built-in configuration system.
 .AddControllerActivation()
 .AddViewComponentActivation()
 .AddPageModelActivation()
 .AddTagHelperActivation();
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 // UseSimpleInjector() enables framework services to be injected into
 // application components, resolved by Simple Injector.
 app.UseSimpleInjector(container, options =>
 {
 // Add custom Simple Injector-created middleware to the ASP.NET pipeline.
 options.UseMiddleware<CustomMiddleware1>(app);
 options.UseMiddleware<CustomMiddleware2>(app);

 // Optionally, allow application components to depend on the
 // non-generic Microsoft.Extensions.Logging.ILogger
 // or Microsoft.Extensions.Localization.IStringLocalizer abstractions.
 options.UseLogging();
 options.UseLocalization();
 });

 InitializeContainer();

 // Always verify the container
 container.Verify();

 // ASP.NET default stuff here
 app.UseMvc(routes => ...);
 }

 private void InitializeContainer()
 {
 // Add application services. For instance:
 container.Register<IUserService, UserService>(Lifestyle.Scoped);
 }
}

NOTE: Please note that when integrating Simple Injector in ASP.NET Core, you do not replace ASP.NET’s built-in container, as advised by the Microsoft documentation#2. The practice with Simple Injector is to use Simple Injector to build up object graphs of your application components and let the built-in container build framework and third-party components, as shown in the previous code snippet. To understand the rationale around this, please read this article#3.

Available integration packages

In case you need more fine-grained control over the number of Microsoft packages that get included in your application, you can decide to use one of the other available ASP.NET Core integration packages. The following table lists the relevant integration packages sorted from most complete to most basic integration:

	Integration Package

	Description

	SimpleInjector.Integration.AspNetCore.Mvc#4

	Adds Tag Helper and Page Model integration for ASP.NET Core MVC.
The features of this package are described on his page.

This package contains the following dependencies:

	SimpleInjector.Integration.AspNetCore.Mvc.Core

	Microsoft.AspNetCore.Mvc.Razor

	Microsoft.AspNetCore.Mvc.RazorPages

	SimpleInjector.Integration.AspNetCore.Mvc.Core#5

	Adds Controller and View Component integration for ASP.NET Core MVC.
The features of this package are described on his page.

This package contains the following dependencies:

	SimpleInjector.Integration .AspNetCore

	Microsoft.AspNetCore.Mvc.Core

	Microsoft.AspNetCore.Mvc.ViewFeatures

	SimpleInjector.Integration.AspNetCore#6

	Adds request scoping and middleware integration ASP.NET Core.
The features of this package are described on his page.

This package contains the following dependencies:

	SimpleInjector.Integration.ServiceCollection

	Microsoft.AspNetCore.Http

	Microsoft.Extensions.Hosting.Abstractions

	SimpleInjector.Integration.GenericHost#7

	Adds .NET Core 2.1 Hosted Service integration and integration on top of
IHost.
The features of this package are discussed in the
.NET Generic Host Integration Guide.

This package contains the following dependencies:

	SimpleInjector.Integration .ServiceCollection

	Microsoft.Extensions.Hosting .Abstractions

	SimpleInjector.Integration.ServiceCollection#8

	Adds integration with .NET Core’s configuration system (i.e.
IServiceCollection) by allowing framework configured-services to be
injected into Simple Injector-managed components. Furthermore, simplifies
integration with .NET Core’s logging infrastructure.
The features of this package are discussed in the
ServiceCollection Integration Guide.

This package contains the following dependencies:

	SimpleInjector (core library)

	Microsoft.Extensions .DependencyInjection.Abstractions

	Microsoft.Extensions.Logging.Abstractions

Wiring custom middleware

The previous Startup snippet already showed how a custom middleware class can be used in the ASP.NET Core pipeline. The Simple Injector ASP.NET Core integration packages add an UseMiddleware extension method that allows adding custom middleware. The following listing shows how a CustomMiddleware class is added to the pipeline.

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 app.UseSimpleInjector(container, options =>
 {
 options.UseMiddleware<CustomMiddleware>(app);
 });

 ...
}

The type supplied to UseMiddleware<T> should implement the IMiddleware interface from the Microsoft.AspNetCore.Http namespace. A compile error will be given in case the middleware does not implement that interface.

This UseMiddleware overload ensures two particular things:

	Adds a middleware type to the application’s request pipeline. The middleware will be resolved from the supplied the Simple Injector container.

	The middleware type will be added to the container for verification.

The following code snippet shows how such CustomMiddleware class might look like:

// Example of some custom user-defined middleware component.
public sealed class CustomMiddleware : Microsoft.AspNetCore.Http.IMiddleware
{
 private readonly IUserService userService;

 public CustomMiddleware(IUserService userService)
 {
 this.userService = userService;
 }

 public async Task InvokeAsync(HttpContext context, RequestDelegate next)
 {
 // Do something before
 await next(context);
 // Do something after
 }
}

Notice how the CustomMiddleware class contains dependencies. When the middleware is added to the pipeline using the previously shown UseMiddleware overload, it will be resolved from Simple Injector on each request, and its dependencies will be injected.

Cross wiring ASP.NET and third-party services

This topic has been moved. Please go here.

Working with IOptions<T>

This topic has been moved. Please go here.

Using Hosted Services

Simple Injector simplifies integration of Hosted Services into ASP.NET Core. For this, you need to include the SimpleInjector.Integration.GenericHost#9 NuGet package. For more information on how to integrate Hosted Services into your ASP.NET Core web application, please read the Using Hosted Services section of the .NET Generic Host Integration Guide.

Using [FromServices] in ASP.NET Core MVC Controllers

Besides injecting dependencies into a controller’s constructor, ASP.NET Core MVC allows injecting dependencies directly into action methods#10 using method injection. This is done by marking a corresponding action method argument with the [FromServices] attribute.

While the use of [FromServices] works for services registered in ASP.NET Core’s built-in configuration system (i.e. IServiceCollection), the Simple Injector integration package, however, does not integrate with [FromServices] out of the box. This is by design and adheres to our design guidelines, as explained below.

IMPORTANT: Simple Injector’s ASP.NET Core integration packages do not allow any Simple Injector registered dependencies to be injected into ASP.NET Core MVC controller action methods using the [FromServices] attribute.

The use of method injection, as the [FromServices] attribute allows, has a few considerate downsides that should be prevented.

Compared to constructor injection, the use of method injection in action methods hides the relationship between the controller and its dependencies from the container. This allows a controller to be created by Simple Injector (or ASP.NET Core’s built-in container for that matter), while the invocation of an individual action might fail, because of the absence of a dependency or a misconfiguration in the dependency’s object graph. This can cause configuration errors to stay undetected longer than strictly required. Especially when using Simple Injector, it blinds its diagnostic abilities which allow you to verify the correctness at application start-up or as part of a unit test.

You might be tempted to apply method injection to prevent the controller’s constructor from becoming too large. But big constructors are actually an indication that the controller itself is too big. It is a common code smell named Constructor over-injection#11. This is typically an indication that the class violates the Single Responsibility Principle#12 meaning that the class is too complex and will be hard to maintain.

A typical solution to this problem is to split up the class into multiple smaller classes. At first this might seem problematic for controller classes, because they can act as gateway to the business layer and the API signature follows the naming of controllers and their actions. Do note, however, that this one-to-one mapping between controller names and the route of your application is not a requirement. ASP.NET Core has a very flexible routing system#13 that allows you to completely change how routes map to controller names and even action names. This allows you to split controllers into very small chunks with a very limited number of constructor dependencies and without the need to fall back to method injection using [FromServices].

Simple Injector promotes best practices, and because of downsides described above, we consider the use of the [FromServices] attribute not to be a best practice. This is why we choose not to provide out-of-the-box support for injecting Simple Injector registered dependencies into controller actions.

In case you still feel method injection is the best option for you, you can plug in a custom IModelBinderProvider implementation returning a custom IModelBinder that resolves instances from Simple Injector.

Resolving services from MVC’s ValidationContext

ASP.NET Core MVC allows you to implement custom validation logic inside model classes using the IValidatableObject interface. Although there is nothing inherently wrong with placing validation logic inside the model object itself, problems start to appear when that validation logic requires services to work. By default this will not work with Simple Injector, as the ValidationContext.GetService method forwards the call to the built-in configuration system—not to Simple Injector.

In general, you should prevent calling GetService or similar methods from within application code, such as MVC model classes. This leads to the Service Locator anti-pattern.

Instead, follow the advice given in this Stack Overflow answer#14.

Using Razor Pages

ASP.NET Core 2.0 introduced an MVVM-like model, called Razor Pages#15. A Razor Page combines both data and behavior in a single class.

Integration for Razor Pages is part of the SimpleInjector.Integration.AspNetCore.Mvc integration package. This integration comes in the form of the AddPageModelActivation extension method. This extension method should be used in the ConfigureServices method of your Startup class:

// This method gets called by the runtime.
public void ConfigureServices(IServiceCollection services)
{
 ...

 services.AddSimpleInjector(container, options =>
 {
 options.AddAspNetCore()
 .AddPageModelActivation();
 });
}

This is all that is required to integrate Simple Injector with ASP.NET Core Razor Pages.

Working with ASP.NET Core Identity

The default Visual Studio template comes with built-in authentication through the use of ASP.NET Core Identity. The default template requires a fair amount of cross wired dependencies. When auto cross wiring is enabled (when calling UseSimpleInjector) integration with ASP.NET Core Identity couldn’t be more straightforward. When you followed the cross wire guidelines, this is all you’ll have to do to get Identity running.

NOTE: It is highly advisable to refactor the AccountController to not to depend on IOptions<IdentityCookieOptions> and ILoggerFactory. See the topic about IOptions<T> for more information.

Footnotes

	#1

	https://www.nuget.org/packages/SimpleInjector.Integration.AspNetCore.Mvc

	#2

	https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection#replacing-the-default-services-container

	#3

	https://simpleinjector.org/blog/2016/06/whats-wrong-with-the-asp-net-core-di-abstraction/

	#4

	https://www.nuget.org/packages/SimpleInjector.Integration.AspNetCore.Mvc

	#5

	https://www.nuget.org/packages/SimpleInjector.Integration.AspNetCore.Mvc.Core

	#6

	https://www.nuget.org/packages/SimpleInjector.Integration.AspNetCore

	#7

	https://www.nuget.org/packages/SimpleInjector.Integration.GenericHost

	#8

	https://www.nuget.org/packages/SimpleInjector.Integration.ServiceCollection

	#9

	https://www.nuget.org/packages/SimpleInjector.Integration.GenericHost

	#10

	https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/dependency-injection?view=aspnetcore-2.1#action-injection-with-fromservices

	#11

	https://blog.ploeh.dk/2018/08/27/on-constructor-over-injection/

	#12

	https://en.wikipedia.org/wiki/Single_responsibility_principle

	#13

	https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing

	#14

	https://stackoverflow.com/a/55846598/264697

	#15

	https://docs.microsoft.com/en-us/aspnet/core/razor-pages/

Silverlight Integration Guide

Configuring Simple Injector to build up Page classes with their dependencies is simply a matter of adding a Bootstrap() method to the App class and resolving the MainPage during Application_Startup:

using System;
using System.Windows;
using SimpleInjector;

public partial class App : Application
{
 public App()
 {
 this.Startup += this.Application_Startup;
 this.Exit += this.Application_Exit;
 this.UnhandledException += this.Application_UnhandledException;

 InitializeComponent();
 }

 private void Application_Startup(object sender, StartupEventArgs e)
 {
 var container = Bootstrap();

 this.RootVisual = container.GetInstance<MainPage>();
 }

 public static Container Bootstrap()
 {
 // Create the container as usual.
 var container = new Container();

 // Register your pages and view models:
 container.Register<MainPage>();
 container.Register<MainPageViewModel>();

 container.Verify();

 return container;
 }

 // Rest of the code
}

Usage

Constructor injection can now be used in any pages (e.g. MainPage) and view models:

using System.Windows;

public partial class MainPage : Page
{
 public MainPage(MainPageViewModel viewModel)
 {
 InitializeComponent();

 // Assign to the data context so binding can be used.
 base.DataContext = viewModel;
 }
}

public class MainPageViewModel
{
 private readonly IQueryProcessor queryProcessor;
 private readonly IUserContext userContext;

 public MainPageViewModel(IQueryProcessor queryProcessor,
 IUserContext userContext) {
 this.queryProcessor = queryProcessor;
 this.userContext = userContext;
 }

 public IEnumerable<IUser> Users => this.queryProcessor.Execute(new GetAllUsers());
}

Footnotes

 _images/srp.png
‘Name. Value |

B @ container {Simplelnjector.Container)
E @ Potential Single Responsibility Violations 1 possible violation.
E @ Foo Foo has 7 dependencies which might ndicate a SRP violation
Bl Vicktion
© ImplementationType
B @ Dependencies 7 dependencies.

0] SenviceType fansient
w SenviceType

2 SenviceType

UnitOfWorkFactory, Lifestyl
urrencyProvider, Lifestyls
FooPolicy, Lifestyle = Transient

fansient

000000 E

Bl SenviceType = BarService, Lifestyle = Transient
“l ServiceType = ICoffecMaker, Lifestyle = Transient
651 SenviceType = KitchenSink, Lifestyle = Transient
1 SenviceType = ceCubeProducer, Lifestyle = Transient
@ Registrations Count =9
5 Options {Simplelnjector.ConteinerOptions} B

CallStack | Watch 1 Error ist

_images/wpfstartupobject.png
Build

Buid Events
Debug
Resources
Senvices
Settings
Reference Paths
Signing
Securty
Pubiich

Code Analysis

Prog MainWindow.xam!

Configuration: | N/A

Platform: | N/A

Assembly name:
WpfApplicationt

Target framework:
NET Fra

Startup object:

Wetapplatont rogram AN
(Not set).

Default namespace:
WpfApplicationt

Output type:
Windows Application

A manifest determines specific settings for an application. To embed a custom manife

_images/pipeline2.png
1052y adAL pasaisiBaun

ssep JadRpoIdBouBIS| | sseo uonensiboy alfisay SSe[D J3INPOIRORISU|

Resolve arguments

Yes

_images/shortcircuited.png
‘Name. Value

B @ container {Simplelnjector.Container)
E @ Configuration Warnings Warnings in multple groups have been detected.
© Unregistered Types 1 container-registered type has been detected that i referer
£ @ Possible Short Crcuited Dependencies 1 component has been found that possibly short circuit o ¢
£ @ HomeController HomeController might incorrectly depend on unregistered!
[FomeCortroler nlﬂl:km:div Sependon vegetered e Mwm«am«k ransen) retesd o UntoNTark (eb Reauesd)
egitration
© Actual Dependency MyUnitOfWork
© ExpectedDependency UnitOfWork
© Regstrations Count =4

5 Options {Simplelnjector.ConteinerOptions}
@ RawView

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Simple Injector’s documentation!

 		
 Quick Start

 		
 Overview

 		
 Getting started

 		
 A Quick Example

 		
 Dependency Injection

 		
 Introducing Simple Injector

 		
 More information

 		
 Using Simple Injector

 		
 Resolving instances

 		
 Configuring Simple Injector

 		
 Auto-Registration/Batch-registration

 		
 Collections

 		
 Collection types

 		
 Auto-registering collections

 		
 Adding registrations to an existing collection

 		
 Verifying the container’s configuration

 		
 Automatic constructor injection / auto-wiring

 		
 More information

 		
 Object Lifetime Management

 		
 Transient Lifestyle

 		
 Singleton Lifestyle

 		
 Scoped Lifestyle

 		
 Order of disposal

 		
 Retrieving list of container-created disposables

 		
 Thread Scoped Lifestyle

 		
 Async Scoped Lifestyle (async/await)

 		
 Web Request Lifestyle

 		
 Async Scoped lifestyle vs. Web Request lifestyle

 		
 WCF Operation Lifestyle

 		
 Per Graph Lifestyle

 		
 Instance Per Dependency Lifestyle

 		
 Per Thread Lifestyle

 		
 Per HTTP Session Lifestyle

 		
 Hybrid Lifestyle

 		
 Developing a Custom Lifestyle

 		
 Integration Guide

 		
 Console Applications

 		
 ASP.NET Core MVC

 		
 Available integration packages

 		
 Wiring custom middleware

 		
 Cross wiring ASP.NET and third-party services

 		
 Working with IOptions<T>

 		
 Using Hosted Services

 		
 Using [FromServices] in ASP.NET Core MVC Controllers

 		
 Resolving services from MVC’s ValidationContext

 		
 Using Razor Pages

 		
 Working with ASP.NET Core Identity

 		
 .NET Generic Host

 		
 Using Hosted Services

 		
 ServiceCollection Console Applications

 		
 Cross wiring framework and third-party services

 		
 Disposing the Container

 		
 Integrating with Microsoft Logging

 		
 Integrating with Microsoft Localization

 		
 Working with IOptions<T>

 		
 ASP.NET MVC

 		
 ASP.NET Web API

 		
 Basic setup

 		
 Extra features

 		
 ASP.NET Web Forms

 		
 OWIN

 		
 Basic setup

 		
 Extra features

 		
 Windows Forms

 		
 WCF

 		
 WAS Hosting and Non-HTTP Activation

 		
 WPF

 		
 Step 1:

 		
 Step 2:

 		
 Step 3:

 		
 Usage

 		
 Other Technologies

 		
 Patterns

 		
 Diagnostic Services

 		
 Supported Diagnostic Warnings

 		
 Lifestyle Mismatches

 		
 Short Circuited Dependencies

 		
 Torn Lifestyle

 		
 Ambiguous Lifestyles

 		
 Disposable Transient Components

 		
 Supported Information Messages

 		
 Potential Single Responsibility Violations

 		
 Container-Registered Types

 		
 How to view diagnostic results

 		
 Suppressing warnings

 		
 Limitations

 		
 How To

 		
 Register factory delegates

 		
 Lazy

 		
 Resolve instances by key

 		
 Register multiple interfaces with the same implementation

 		
 Override existing registrations

 		
 Verify the container’s configuration

 		
 Work with dependency injection in multi-threaded applications

 		
 Package registrations

 		
 Advanced Scenarios

 		
 Generics

 		
 Batch-Registration / Auto-Registration

 		
 Registration of open-generic types

 		
 Mixing collections of open-generic and non-generic components

 		
 Unregistered type resolution

 		
 Context-based injection

 		
 Making contextual registrations based on the parent’s metadata

 		
 Making contextual registrations based on the parent’s parent

 		
 Property injection

 		
 Implicit property injection

 		
 Explicit property injection

 		
 Enabling property injection

 		
 IPropertySelectionBehavior

 		
 Covariance and Contravariance

 		
 Registering plugins dynamically

 		
 Aspect-Oriented Programming

 		
 Decoration

 		
 Applying Decorators conditionally

 		
 Applying Decorators conditionally using type constraints

 		
 Decorators with Func<T> decoratee factories

 		
 Decorated collections

 		
 Using contextual information inside decorators

 		
 Applying decorators conditionally based on consumer

 		
 Decorator registration factories

 		
 Interception using Dynamic Proxies

 		
 Extensibility Points

 		
 Overriding Constructor Resolution Behavior

 		
 Overriding Property Injection Behavior

 		
 Overriding Parameter Injection Behavior

 		
 Resolving Unregistered Types

 		
 Overriding Lifestyle Selection Behavior

 		
 Intercepting the Creation of Types

 		
 Building up External Instances

 		
 Interception of Resolved Object Graphs

 		
 Container-locking

 		
 Simple Injector Pipeline

 		
 Registration Pipeline

 		
 Resolve Pipeline

 		
 Design Principles

 		
 Make simple use cases easy, make complex use cases possible

 		
 Push developers into best practices

 		
 Fast by default

 		
 Don’t force vendor lock-in

 		
 Never fail silently

 		
 Features should be intuitive

 		
 Communicate errors clearly and describe how to solve them

 		
 Design Decisions

 		
 The container is locked after the first call to resolve

 		
 The API clearly differentiates the registration of collections

 		
 No support for XML based configuration

 		
 Never force users to release what they resolve

 		
 Don’t allow resolving scoped instances outside an active scope

 		
 No out-of-the-box support for property injection

 		
 No out-of-the-box support for dynamic interception

 		
 Limited Auto-Registration API

 		
 No per-thread lifestyle

 		
 Allow only a single constructor

 		
 No support for optional constructor arguments

 		
 Legal stuff

 		
 Simple Injector License

 		
 Contributions

 		
 Simple Injector Trademark Policy

 		
 How to Contribute

 		
 Appendix

 		
 Interception Extensions

 		
 Variance Extensions

 		
 Resolution conflicts caused by dynamic assembly loading

 		
 What’s the problem?

 		
 So what do you need to do?

 		
 InjectionConsumerInfo.ServiceType is deprecated

 		
 What’s the problem?

 		
 So what should I do instead?

_static/file.png

_static/up-pressed.png

_static/up.png

_static/down.png

_images/SimpleInjector.png
,‘?/ SIMPLE INJECTOR"

_images/diagnostics_4.9.png
Search (Ctrl+) SearchDepth: 3 = Y A

Neme Value
4@ container {Simplelnjector Container}
4@ Lifestyle Mismatches 1 lfestyle mismatch for 1 service.
4 RealUsersenvice ReallserService (Singleton) depends on IUserRepository implemented by SqlUserRepository (Transient).
» f Dependency ServiceType = IUserRepository, Lifestyle = Transient

» f ImplementationType {Name = "RealUserService" FullName = *ObjectGraph1 RealUserService"}

» B Lifestyle Singleton
» @ Non-Public members

» @ Registrations Count =6
» @ Root Registrations Count =2

» # Options Defautt Configuration
) @ RawView

_images/diagnosticsdebuggerview_4.9.png
container.RegisterSingleton<RealUserService>();
H

// Act ®

_images/ambiguouslifestyles.png
Name
4 & container
4 @ Component with ambiguous lifestyles 2 possible registrations found with ambiguous ifestyles.

ey
b @ ImplementationType
b o Liesyles
b @ Conficing Registations
b @ oo
© Registrstions
© Root Registations
£ Opions
© Raw View

Value
{Simplelnjector.Container}

‘The registration for [Bar (Transient) maps to the same impleme:
FooBar

Singleton and Transient

IFoo.

“The registration for IFoo (Singleton) maps to the same impleme
Count =3

Count =3

Defautt Configuration

_images/dependencygraph_4.9.png
Name
4@ container

F SeniceType
© Raw View
b @ ReallserSenvice

s Optio

1 lifestyle m

Count
Count

{Name =
Transient

{SimplelnjectorAdva|

{Name

SenviceType = RealU

Defautt Configurat

Text Visualizer

bpresion: [new SplejecorinanceProducerinanceproducel

Lal

UserListController(// Transient
SalRepository<User> (// Transient
SaqlConnectionFactory(), // Singleton
FileLogger0) // Singleton

_images/pipeline1_v3.png
IConstructorResolutionBehavior

IDependencylnjectionBehavior

Nof

No ILifestyleSelectionBehavior

Yes

-t

_images/disposabletransientcomponent.png
‘Name. Value
B @ container {Simplelnjector.Container}
1@ Disposable Transient Compor 1 disposable transient component found.

@ Isenice DisposableService s registered as transient, but implements IDisposable.
Registrations Count =2
Root Registrations Count =2
& Options, Default Configuration
Raw View

_images/lifestylemismatch.png
‘Name. Value

B @ container {Simplelnjector.Container}
E) @ Potentiol Lifestyle Mismatches 2 possible mismatches for 2 services.
B @ RealUserService RealUserService (Singleton) depends on IUserRepository (Transient)
B @ Mismatch ReallUserService (Singleton) depends on UserRepository (Transient)
1/ Dependency ServiceType = IUserRepository. Lifestyle = Transient
K ImplementationType InMemoryUserRepository
5 Lifestyle Transient
K SeniiceType IUserRepository
@ RawView
K ImplementationType RealUserService
5 Lifestyle Singleton
@ FokelserSenvice FakelserSenvice (Singleton) depends on IUserRepository (Transient
@ Registrations Count=4
5 Options {Simplelnjector.ConteinerOptions}

© Raw View

